CS60021: Scalable Data Mining

Streaming Algorithms

Sourangshu Bhattacharya

Frequent count

Streaming model revisited

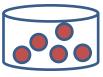
- Data is seen as incoming sequence
 - can be just element-ids, or ids +frequency updates

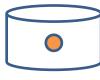
Arrival only streams

- Arrival + departure
 - Negative updates to frequencies possible
 - Can represent fluctuating quantities, e.g. monitoring databases.

Frequency Estimation

- Given the input stream, answer queries about item frequencies at the end
 - Useful in many practical applications e.g. finding most popular pages from website logs, detecting DoS attacks, database optimization





- Also used as subroutine in many problems
 - Entropy estimation, TF-IDF, Language models etc

Frequency estimation in one pass

- Q1. Can we create a data structure, sketch, sublinear in the data size to answer all frequency queries exactly?
 - No
- Q2. Can we create a sketch to answer frequencies of the "most frequent" elements exactly?
 - No
- Q3. Sketch to estimate frequencies of "most frequent" elements approximately?
 - YES!

Approximate Heavy Hitters

- Given an update stream of length m, find out all elements that occur "frequently"
 - e.g. at least 1% of the time
 - cannot be done in sublinear space, one pass

- Find out elements that occur at least ϕm times, and none that appears $<(\phi-\epsilon)m$ times
 - Error ∈
 - Related question: estimate each frequency with error $\pm \epsilon m$

Majority Algorithm

- Whether any item in a stream has majority at a given time:
 - Strict majority: >N/2
- Arrivals only model
- Start with a counter set to zero
- For each item
 - if counter = 0, pick new item and increment counter
 - else if new item is same as item in hand, increment counter
 - else decrement counter

Majority Algorithm

- Start with a counter set to zero
- For each item
 - if counter = 0, pick new item and increment counter
 - else if new item is same as item in hand, increment counter
 - else decrement counter
- If there is a majority item, it is in hand at the end
- Proof: Since majority occurs > N/2 times, not all occurrences can be cancelled out

Frequent count [Misra-Gries]

Keep k counters and items in hand

Initialize:

Set all counters to 0

$\underline{\mathsf{Process}(x)}$

- if x is same as any item in hand, increment its counter
- else if number of items < k, store x with counter = 1
- else drop x and decrement all counters

Query(q)

If q is in hand return its counter, else 0

Frequent count

• f_x be the true frequency of element x

 At the end, some set of elements is stored with counter values

• If $query\ y$ in hand, $\widehat{f_y} = \text{counter value, else } \widehat{f_y} = 0$

Theoretical Bound

<u>Claim</u>: No element with frequency > m/k is missed at the end

Intuition: Each decrement (including drop) is charged with k arrivals. Therefore, will have some copy of an item with frequency > m/k

Stronger Claim

Choose $k=\frac{1}{\epsilon}$. For every item x, with frequency f_x the algo can return an estimate $\widehat{f_x}$ such that

$$f_{x} - \epsilon m \le \widehat{f}_{x} \le f_{x}$$

Same intuition, whenever we drop a copy of item x, we also drop k-1 copies of other items

Summary

- Simple deterministic algorithm to estimate heavy hitters
 - Works only in the arrival model
- Proposed in 1982, rediscovered multiple times with modifications

Our next lecture will discuss other algorithms

Space saving

Space Saving Algorithm

Keep k counters and items in hand

Initialize:

Set all counters to 0

$\underline{\mathsf{Process}(x)}$

- if x is same as any item in hand, increment its counter
- else if number of items < k, store x with counter = 1
- else replace item with smallest counter by x, increment counter

Query(q)

If q is in hand return its counter, else 0

Analysis

- Claim 1: All items with true count $> \epsilon m$ are present in hand at the end
- Claim 2: For every element x, the estimate \hat{f}_x satisfies:

$$f_{x} \le \hat{f}_{x} \le f_{x} + \epsilon m$$

Analysis

Claim 1: All items with true count $> \epsilon m$ are present in hand at the end

- Smallest counter value, min, is at most ϵm
 - Counters sum to m, by induction
 - $-1/\epsilon$ counters, so average is ϵm , hence smallest is less
- True count of an uncounted item is between 0 and min
 - Proof by induction, true initially, min increases monotonically
 - Consider last time the item was dropped

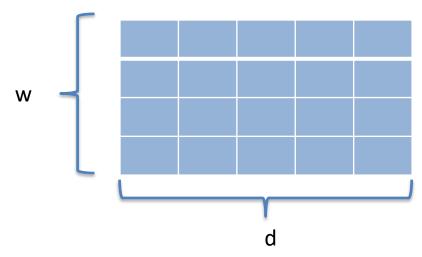
Counter based vs "sketch" based

- Counter based methods
 - Misra-Gries, Space-Saving,
 - Work for arrival only streams
 - In practice somewhat more efficient: space, and especially update time
- Sketch based methods
 - "Sketch" is informally defined as a "compact" data structure that allows both inserts and deletes
 - Use hash functions to compute a linear transform of the input
 - Work naturally for arrivals + departure

Count-Min Sketch

Count-min sketch

- Model input stream as a vector over U
 - $-f_x$ is the entry for dimension x
- Creates a small summary $w \times d$
- Use w hash functions, each maps $U \rightarrow [1, d]$



Count Min Sketch

<u>Initialize</u>

- Choose h_1, \ldots, h_w , $A[w, d] \leftarrow 0$

Process(x, c):

- For each $i \in [w]$, $A[i, h_i(x)] += c$

Query(q):

- Return $\min_{i} A[i, h_i(x)]$

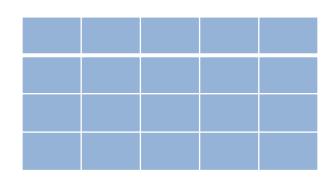
Example

h1		
h2		

	h1	h2
	2	1
•	1	2
	1	3
0	3	2

Space =
$$O(wd)$$

Update time = $O(w)$



Each item is mapped to one bucket per row

$$d = \frac{2}{\epsilon}$$
 $w = \log\left(\frac{1}{\delta}\right)$

$$Y_1 \dots Y_w$$
 be the w estimates, i.e. $Y_i = A[i, h_i(x)], \quad \widehat{f}_x = \min_i Y_i$

Each estimate $\widehat{f}_{\mathcal{X}}$ always satisfies $\widehat{f}_{\mathcal{X}} \geq f_{\mathcal{X}}$

$$E[Y_i] = \sum_{y:h_i(y)=h_i(x)} f_y = f_x + \epsilon (m - f_x)/2$$

$$d = \frac{2}{\epsilon}$$
 $w = \log\left(\frac{1}{\delta}\right)$

 $Y_1 \dots Y_w$ be the w estimates, i.e. $Y_i = A[i, h_i(x)], \quad \widehat{f}_x = \min_i Y_i$

Each estimate \widehat{f}_{x} always satisfies $\widehat{f}_{x} \geq f_{x}$

$$E[Y_i] = \sum_{y:h_i(y)=h_i(x)} f_y = f_x + \epsilon (m - f_x)/2$$

Applying Markov's inequality,

$$\Pr[Y_i - f_x > \epsilon m] \le \frac{\epsilon (m - f_x)}{2\epsilon m} \le \frac{1}{2}$$

• Since we are taking minimum of $\log\left(\frac{1}{\delta}\right)$ such random variables,

$$\Pr[\widehat{f}_{x} > f_{x} + \epsilon m] \le 2^{-\log(\frac{1}{\delta})} \le \delta$$

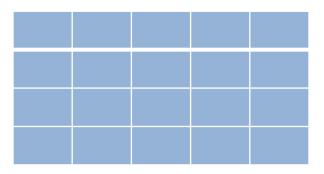
• Hence, with probability $1 - \delta$, for any query x

$$f_{\mathcal{X}} \le \widehat{f}_{\mathcal{X}} \le f_{\mathcal{X}} + \epsilon m$$

Count-Sketch

Count-sketch

- Model input stream as a vector over U
 - $-f_x$ is the entry for dimension x
- Creates a small summary $w \times d$
- Use w hash functions, $h_i: U \to [1, d]$
- w sign hash function, each maps $g_i: U \to \{-1, +1\}$



Count Sketch

Initialize

- Choose h_1, \ldots, h_w , $A[w, d] \leftarrow 0$

Process(x, c):

- For each $i \in [w]$, $A[i, h_i(x)] += c \times g_i(x)$

Query(q):

- Return median $\{g_i(x)A[i,h_i(x)]\}$

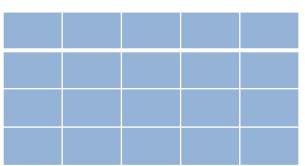
Example

h1		
h2		

	h1,g1	h2,g2
	2,+	1,+
0	3,-	2,+
	1,+	3,-
	2,-	3,+

Space =
$$O(wd)$$

Update time = $O(w)$



Each item is mapped to one bucket per row

•
$$d = \frac{3}{\epsilon^2}$$
 $w = \log\left(\frac{1}{\delta}\right)$

$$Y_1 \dots Y_w$$
 be the w estimates,
i.e. $Y_i = g_i(x)A[i,h_i(x)], \quad \widehat{f}_x = \underset{i}{\text{median }} Y_i$

$$E[Y_i] = E[g_i(x) A[i, h_i(x)]] = E[g_i(x) \sum_{h_i(y) = h_i(x)} f_y g_i(y)]$$

$$E[Y_i] = E[g_i(x) A[i, h_i(x)]] = E[g_i(x) \sum_{h_i(y) = h_i(x)} f_y g_i(y)]$$

Notice that for $x \neq y$, $E[g_i(x) g_i(y)] = 0$!

$$E[Y_i] = g_i(x)^2 f_x = f_x$$

We analyse the variance in order to bound the error For simplicity assume hash functions all independent

Variance analysis

Using simple algebra, as well as independence of hash functions,

$$var(Y_i) = \frac{\left(\sum_{y} f_y^2 - f_x^2\right)}{d} \le \frac{|f|_2^2}{d} \qquad |f|_2^2 = \sum_{x} f_x^2$$

Using Chebyshev's inequality

$$\Pr[|Y_i - f_x| > \epsilon |f|_2] \le \frac{1}{d\epsilon^2} \le \frac{1}{3}$$

$$d = \frac{3}{\epsilon^2}$$

Finally, use analysis of median-trick with $w = \log\left(\frac{1}{\delta}\right)$

Final Guarantees

• Using space $O\left(\frac{1}{\epsilon^2}\log\left(\frac{1}{\delta}\right)\log(n)\right)$, for any query x, we get an estimate, with prob $1-\delta$ $f_x - \epsilon |f|_2 \le f_x \le f_x + \epsilon |f|_2$

Comparisons

Algorithm	$\widehat{f_x} - f_x$	Space $ imes log(n)$	Error prob	Model
Misra-Gries	$[-\epsilon f _1,0]$	$1/\epsilon$	0	Insert Only
SpaceSaving	$[0,\epsilon f _1]$	$1/\epsilon$	0	Insert Only
CountMin	$[0,\epsilon f _1]$	$\log\left(\frac{1}{\delta}\right)/\epsilon$	δ	Insert+Delete, strict turnstile
CountSketch	$[-\epsilon f _2,\epsilon f _2]$	$\log\left(\frac{1}{\delta}\right)/\epsilon^2$	δ	Insert+Delete

Summary

- CM and Count Sketch to answer point queries about frequencies
 - two user-defined parameters, ϵ and δ
 - Linear sketch, hence can be combined across distributed streams
- Count Sketch handle departures naturally
 - Even if –ve frequencies are present
 - For CM, need strict turnstile
- Extensions to handle range queries and others...
- Actual performance much better than theoretical bound

References:

- Count-sketch:
 - Lecture slides by Graham Cormode
 http://dmac.rutgers.edu/Workshops/WGUnifyingTheory/Slides/cormode.pdf
 - Lecture notes by Amit Chakrabarti:
 http://www.cs.dartmouth.edu/~ac/Teach/data-streams-lecnotes.pdf
 - Sketch techniques for approximate query processing, Graham Cormode.
 http://dimacs.rutgers.edu/~graham/pubs/papers/sk.pdf
- Moment estimation:
 - Mining massive Datasets by Leskovec, Rajaraman, Ullman

References:

- Primary references for this lecture
 - Lecture slides by Graham Cormode <u>http://dmac.rutgers.edu/Workshops/WGUnifyingTheory/Slides/cormode.pdf</u>
 - Lecture notes by Amit Chakrabarti: http://www.cs.dartmouth.edu/~ac/Teach/data-streams-lecnotes.pdf
 - Sketch techniques for approximate query processing, Graham Cormode.
 http://dimacs.rutgers.edu/~graham/pubs/papers/sk.pdf