CS60021: Scalable Data Mining

Streaming Algorithms

Count distinct

Streaming problem: distinct count

* Universe is U, number of distinct elements = m, stream
sizeisn

— Example: U = all IP addresses

10.1.21.10, 10.93.28,1,.....,98.0.3.1,.....10.93.28.1.....

— |IPs can repeat

— Want to estimate the number of distinct elements in the
stream

Other applications

* Universe = set of all k-grams, stream is
generated by document corpus

— need number of distinct k-grams seen in corpus

* Universe = telephone call records, stream
generated by tuples (caller, callee)

— need number of phones that made > 0 calls

Solutions

Seen n elements from stream with elements from U.

Naive solution: O(n log|U]|) space
— Store all elements, sort and count distinct
— Store a hashmap, insert if not present

Bit array: O(|U|) space:

— Bits initialized to 1 only if element seen in stream

Can we do this in less space ?

Approximations

* (€,0) —approximations
— Algorithm will use random hash functions
— Will return an answer 71 such that
l1—-em<in<A+e)n

— This will happen with probability 1 — § over the randomness of the
algorithm

First effort

e Stream length: n, distinct elements: m

* Proposed algo: Given space s, sample s items from the
stream

— Find the number of distinct elements in this set: m
L n
— returnm = mX 5

* Not a constant factor approximation
-1,1,1,1,...,1,2,3,4, ..., m-1

\)
n—-m+1

Linear Counting

* Bit array B of size m, initialized to all zero
* Hash function h: U —» [m]
 When seeing item x, set Blh(x)] =1

Linear Counting

Bit array B of size m, initialized to all zero
Hash function h: U = [m]
When seeing item x, set Blh(x)] =1

Zzy, = fraction of zero entries

Return estimate —m log(%"

Linear Counting Analysis

n n
Pr[position remaining 0] = (1 — %) ~e m

Expected number of positions at zero: E[z,,] = me ™™™

Using tail inequalities we can show this is concentrated

Typically useful only for m = ©(n), often useful in
practice

Flajolet Martin Sketch

Flajolet Martin Sketch

* Components
— “random” hash function h: U — 2* for some large ¢
— h(x) is a £ —length bit string
— initially assume it is completely random, can relax
« zero(v) = position of rightmost 1 in bit representation of v

= max{ i, 2t divides v }

— zeros(10110) =1, zeros(110101000) =3

Flajolet Martin Sketch

Initialize:

— Choose a “random” hash function h: U — 2°
—z«0

Process(x)

— if zeros(h(x)) > z, 7 « zeros(h(x))

Estimate:

— return 27%1/2

Example

0110101
1011010
1000100
1111010

14

Space usage

 We need ¢ > Clog(n) for some C > 3, say
— by birthday paradox analysis, no collisions with high prob

* Sketch:z, needs to have only O(loglogn) bits

* Total space usage = O(logn + loglogn)

Intuition

* Assume hash values are uniformly distributed

* The probability that a uniform bit-string
— is divisible by 2 is %5
— is divisible by 4 is %

— is divisible by 2 is -

We don’t expect any of them to be divisible by plogz(n)+1

Formalizing intuition

S = set of elements that appeared in stream

Foranyr € [£],j € [n], X,; =indicator of zeros(h(j)) =

Y, = number of j € U such that zeros(h(j)) = r

YT — er]

Let Z be final value of z after the algorithm has seen all data

Proof of FM

Y. >0 &< Z=1r ,equivalently, Y, =0—2zZ<r

(| 1
ElY.] =]ES [7”]] Xrj =)1 withprob 2r

J

0 else

Proof of FM

» var(Y,) < Y E[X5] < n/2"

Upper bound

Returned estimate i = 24+1/2

a = smallest integer with 2¢%1/2 > 4n

Prln =4n]|=Pr[Z>=a] =Pr|Y, > 0]

Lower bound

Returned estimate fi = 2%+1/2

b = largest integer with 22%1/2 < n /4

n
Pr[ﬁ<Z] —Pr[2<b]=Pr[Yy,, =0] <

Understanding the bound

~ [

* By union bound, with prob 1 —

)

<n<i4n

S S
=)

* Can get somewhat better constants

* Need only 2-wise independent hash functions,
since we only used variances

Improving the probabilities

To improve the probabilities, a common trick: median of estimates
Create 73, Z5,...., Z}, in parallel
— return median
V2
Expect at most Tk of them to exceed 4n

But if median exceeds 4n , then g of them does exceed 4n
—> using this prob is exp(—Q(k))

Improving the probabilities

To improve the probabilities, a common trick: median of
estimates

Create 73, Z5,...., Z}, in parallel
— return median

Using Chernoff bound, can show that median will lie in
E, 4n] with probability 1 — exp(—Q(k)).

Given error prob 6, choose k = O(log (%))

k-minimum value Sketch

k-MV sketch

 Developed in an effort to get better accuracy

— Flajolet Martin only give multiplicative accuracy

* Additional capabilities for estimating cardinalities of
union and intersection of streams

— If §1 and S, are two streams, can compute their union sketch
from individual sketches of §; and S,

[kMV sketch slides courtesy Cohen-Wang]

Intuition

* Suppose h: U — [0,1] is random hash function such
that h(x) ~ U|0,1] forallx € U

* Maintain min-hash value y
— initialize y « 1
— For each item x;, y « min(y, h(x;))

* Expectation of minimum is E[min h(x;)] = ﬁ
l

. . . 1
Why is expectation of min = — ?
n+1

Intuition:

* You have sampled n points uniformly at random in
interval [0,1]

 n+ 1intervals are formed.

: .1
* Expected length of each interval is —

Value of E[min X;] is the length of an interval.
l

1

Why is expectation of min = — ?
n+1

Assuming a X; = U(0,1), we have:
P(m_inXl- Sx) = 1—P(m,inXl- Zx) =1-(1-x)"
l l

So, the density function is: f(x) = n(1 — x)"1

Hence,

E[miin X;| = f

0

1 1
1
— 1 — n—1 —
xf(x)dx njox(x)"rdx —

k-minimum value sketch

Initialize:

- YV, -V < 1,1
— Uniform random hash functions h4, ..., hy, h;: U = [0,1]

Process(x):

— Forallj € [k], y; « min(y}, h;(x;))

Estimate:

L] 1 1
— return median-of-means(-= , ...,—)
yl Yk

Example

__|h1h2h3 ha
® 45 19 10 .92
35 51 .71 .20

21 .07 93 .18

14 .70 .50 .25

32

Median-of-means

Given (€,0) , choose k = E%log(%)

Group tq, ...ty into log(%) groups of size E% each

Find mean(t;) for each group: Z5, ... ,Zlog(%)

Return = medianof Z4,...Z,
log(s

Complexity

Total space required =
1 1
O(klogn) = O(E—Zlognlog(g))

— can be improved

— don’t need floating points, can use h: U — 2% as before

Update time per item = 0 (k)

— However, can show that most items will not result in updates

Theoretical Guarantees

With probability 1 — 6, returns 71 satisfies

1-en<s<n<d+e)n

Proof: Apply Chebychef’s inequality

0% 0%
P(l XNy — > < —=N > —
(| N .UX| _E)_NEZ 2

followed by Chernoff bounding.

Merging

* For two stream S; and S, use same set of
hash functions

* Foreachj € [k], find the combined sketch as:
— y; = min(y;j,y;)

* Gives estimate of |[S; U S, |

References:

* Primary reference for this lecture
* Lecture notes by Amit Chakrabarti: http://www.cs.dartmouth.edu/~ac/Teach/data-
streams-lecnotes.pdf

http://www.cs.dartmouth.edu/~ac/Teach/data-streams-lecnotes.pdf
http://www.cs.dartmouth.edu/~ac/Teach/data-streams-lecnotes.pdf
http://www.cs.dartmouth.edu/~ac/Teach/data-streams-lecnotes.pdf
http://www.cs.dartmouth.edu/~ac/Teach/data-streams-lecnotes.pdf
http://www.cs.dartmouth.edu/~ac/Teach/data-streams-lecnotes.pdf

