
CS60021: Scalable Data Mining

Streaming Algorithms

Sourangshu Bhattacharya

Count distinct

Streaming problem: distinct count

• Universe is 𝑈, number of distinct elements = m,	stream
size is 𝑛
– Example: 𝑈 =	all IP addresses

– IPs can repeat
– Want to estimate the number of distinct elements in the

stream

3

10.1.21.10, 10.93.28,1,…..,98.0.3.1,…..10.93.28.1…..

Other applications

• Universe = set of all k-grams, stream is
generated by document corpus
– need number of distinct k-grams seen in corpus

• Universe = telephone call records, stream
generated by tuples (caller, callee)
– need number of phones that made > 0 calls

4

Solutions

5

• Seen 𝑛 elements from stream with elements from 𝑈.

• Naïve solution: 𝑂(𝑛	𝑙𝑜𝑔|𝑈|) space
– Store all elements, sort and count distinct
– Store a hashmap, insert if not present

• Bit array: O(|U|) space:
– Bits initialized to 1 only if element seen in stream

• Can we do this in less space ?

Approximations

• 𝜖, 𝛿 −approximations
– Algorithm will use random hash functions
– Will return an answer !𝑛	such that

– This will happen with probability 1 − 𝛿 over the randomness of the
algorithm

6

1 − 𝜖 𝑛 ≤ !𝑛 ≤ 1 + 𝜖 𝑛

First effort

• Stream length: 𝑛, distinct elements: 𝑚
• Proposed algo: Given space 𝑠, sample 𝑠 items from the

stream
– Find the number of distinct elements in this set: $𝑚

– return m = $𝑚× !
"

• Not a constant factor approximation
– 1, 1, 1, 1,…., 1, 2, 3, 4, …., m-1

𝑛 − 𝑚 + 1

Linear Counting

• Bit array 𝐵	of size 𝑚,	initialized to all zero
• Hash function ℎ: 𝑈 → [𝑚]
• When seeing item 𝑥	, set 𝐵 ℎ 𝑥 = 1

8

Linear Counting

• Bit array 𝐵	of size 𝑚,	initialized to all zero
• Hash function ℎ: 𝑈 → [𝑚]
• When seeing item 𝑥	, set 𝐵 ℎ 𝑥 = 1

• 𝑧# =	fraction of zero entries

• Return estimate −m	log($!
#
)

9

Linear Counting Analysis

• Pr[position remaining 0] = 1	 −)
*

+
≈ 𝑒,

!
"

• Expected number of positions at zero: E z- = 	𝑚𝑒,+/*

• Using tail inequalities we can show this is concentrated
• Typically useful only for 𝑚 = Θ(𝑛), often useful in

practice

10

Flajolet Martin Sketch

Flajolet Martin Sketch

• Components
– “random” hash function ℎ: 𝑈 → 2ℓ for some large ℓ
– ℎ(𝑥) is a ℓ −length bit string
– initially assume it is completely random, can relax

• 𝑧𝑒𝑟𝑜 𝑣 =	position of rightmost 1 in bit representation of 𝑣
 = max{	𝑖	, 2'	 𝑑𝑖𝑣𝑖𝑑𝑒𝑠	𝑣	}	

– 𝑧𝑒𝑟𝑜𝑠 10110 = 1, 𝑧𝑒𝑟𝑜𝑠 110101000 = 3

12

Flajolet Martin Sketch

Initialize:
– Choose a “random” hash function ℎ: 𝑈 → 2ℓ

– 𝑧 ← 0
Process(x)

– if 𝑧𝑒𝑟𝑜𝑠 ℎ 𝑥 > 𝑧, 	z ← 𝑧𝑒𝑟𝑜𝑠(ℎ 𝑥)
Estimate:
– return 2()*/,

13

Example

14

h(.)

0110101

1011010

1000100

1111010

Space usage

• We need ℓ ≥ 𝐶 log 𝑛 	 for some 𝐶 ≥ 3, say
– by birthday paradox analysis, no collisions with high prob

• Sketch : 𝑧	, needs to have only 𝑂(log log 𝑛)	bits

• Total space usage = 𝑂(log 𝑛 + log log 𝑛)	

15

Intuition

• Assume hash values are uniformly distributed
• The probability that a uniform bit-string

– is divisible by 2 is ½
– is divisible by 4 is ¼
– ….

– is divisible by 2! is "#!
• We don’t expect any of them to be divisible by 2$%&" ' ("

16

Formalizing intuition

• 𝑆 =	set of elements that appeared in stream

• For any 𝑟 ∈ ℓ , 𝑗 ∈ [𝑛],	 𝑋-. =	indicator of zeros(ℎ 𝑗) ≥ 𝑟

• 𝑌- =	number of 𝑗 ∈ 𝑈 such that zeros(ℎ 𝑗) ≥ 𝑟
𝑌) =2

*∈,

𝑋)*	

• Let 𝑧̂ be final value of 𝑧 after the algorithm has seen all data

17

Proof of FM

• 𝑌5 > 0	 ⟷ 𝑧̂ ≥ 𝑟 , equivalently, 𝑌5 = 0 ⟷ 𝑧̂ < 𝑟

• 𝐸 𝑌5 = ∑6∈8 𝐸 𝑋56

• 𝐸 𝑌5 = +
9#
	

• 𝑣𝑎𝑟 𝑌5 = ∑6∈8 𝑣𝑎𝑟 𝑋56 	 ≤ ∑6∈8 𝐸 𝑋569 	

18

𝑋-. 	= 	Q1	 𝑤𝑖𝑡ℎ	𝑝𝑟𝑜𝑏
1
2-

0	 𝑒𝑙𝑠𝑒	

Proof of FM

• 𝑣𝑎𝑟 𝑌5 ≤ ∑6∈8 𝐸 𝑋569 ≤ 	 𝑛/25

19

Pr 𝑌- > 0 = Pr 𝑌- ≥ 1 ≤
𝐸 𝑌-
1

	=
𝑛
2-

Pr 𝑌- = 0 ≤ Pr 𝑌- 	− 𝐸 𝑌- ≥ 𝐸 𝑌- ≤
𝑣𝑎𝑟 𝑌-
𝐸 𝑌- , 	 ≤

2-

𝑛
	

Upper bound

Returned estimate N𝑛 = 2;̂<)/9	

𝑎 = smallest integer with 2=<)/9 ≥ 4𝑛

Pr N𝑛 	≥ 4𝑛	 = Pr 	𝑧̂ ≥ 𝑎	 = Pr 𝑌= > 0 ≤
𝑛
2=

≤
2
4

20

Lower bound

Returned estimate [𝑛 = 2(̂)*/,	

𝑏 = largest integer with 20)*/, ≤ 𝑛/4

Pr [𝑛 ≤
𝑛
4
	 = Pr 	𝑧̂ ≤ 𝑏	 = Pr 𝑌0)* = 0 ≤

20)*

𝑛
≤

2
4

21

Understanding the bound

• By union bound, with prob 1	 − 9
9
,	

• Can get somewhat better constants
• Need only 2-wise independent hash functions,

since we only used variances

22

𝑛
4
≤ [𝑛 ≤ 4𝑛

Improving the probabilities

• To improve the probabilities, a common trick: median of estimates

• Create $𝑧*, $𝑧,,…., 𝑧1 in parallel
– return median

• Expect at most ,
2
𝑘 of them to exceed 4𝑛

• But if median exceeds 4𝑛 , then 1
,
 of them does exceed 4n

 à using this prob is exp(−Ω 𝑘)

23

Improving the probabilities
• To improve the probabilities, a common trick: median of

estimates

• Create !𝑧), !𝑧9,…., $𝑧> in parallel
– return median

• Using Chernoff bound, can show that median will lie in
+
?
, 4𝑛 with probability 1	 − exp(−Ω 𝑘).

• Given error prob 𝛿,	choose 𝑘 = O(log)
@
)

24

k-minimum value Sketch

k-MV sketch

• Developed in an effort to get better accuracy
– Flajolet Martin only give multiplicative accuracy

• Additional capabilities for estimating cardinalities of
union and intersection of streams
– If 𝑆* and 𝑆, are two streams, can compute their union sketch

from individual sketches of 𝑆* and 𝑆,

27

[kMV sketch slides courtesy Cohen-Wang]

Intuition

• Suppose ℎ: 𝑈 → [0,1] is random hash function such
that ℎ 𝑥 ∼ 𝑈 0,1 for all 𝑥 ∈ 𝑈

• Maintain min-hash value 𝑦
– initialize 𝑦 ← 1
– For each item 𝑥', 𝑦 ← min(𝑦, ℎ 𝑥')

• Expectation of minimum is		𝐸[min
A
ℎ(𝑥A)] =

)
+<)

	

28

Why is expectation of min = 9
:;9

 ?

Intuition:

• You have sampled 𝑛 points uniformly at random in
interval [0,1]

• 𝑛 + 1	intervals are formed.

• Expected length of each interval is)
+<)

• Value of E[min
A
𝑋A] is the length of an interval.

29

Why is expectation of min = 9
:;9

 ?

Assuming a 𝑋' = 𝑈(0,1), we have:
𝑃 min

'
𝑋' ≤ 𝑥 = 1 − 𝑃 min

'
𝑋' ≥ 𝑥 = 1 − 1 − 𝑥 3

So, the density function is: 𝑓 𝑥 = 𝑛 1 − 𝑥 34*

Hence,

𝐸[min
'
𝑋'] = g

5

*
𝑥𝑓 𝑥 𝑑𝑥 = 𝑛g

5

*
𝑥 1 − 𝑥 34*𝑑𝑥 =

1
𝑛 + 1

30

k-minimum value sketch

Initialize:
– 𝑦*, … , 𝑦1 ← 1,…1
– Uniform random hash functions ℎ*, … , ℎ1, ℎ': 𝑈 → [0,1]

Process 𝑥 :
– For all 𝑗 ∈ 𝑘 , 𝑦. ← min(𝑦., ℎ. 𝑥')

Estimate:

– return median-of-means(*6*
, … , *6!)

31

Example

32

h1 h2 h3 h4
.45 .19 .10 .92

.35 .51 .71 .20

.21 .07 .93 .18

.14 .70 .50 .25

Median-of-means

• Given (𝜖, 𝛿) , choose 𝑘 = 7
8" log(

*
9)

• Group 𝑡*, … 𝑡1 into log(*9) groups of size 78" each

• Find mean 𝑡' 	for each group: 𝑍*, … , 𝑍:;<(#$)

• Return [𝑛 =	median of 𝑍*, … 𝑍:;<(#$)

33

Complexity

• Total space required =
𝑂(𝑘 log 𝑛) = 𝑂()

B$
log 𝑛 log()

@
))	

– can be improved
– don’t need floating points, can use ℎ: 𝑈 → 2ℓ as before

• Update time per item = 𝑂(𝑘)
– However, can show that most items will not result in updates

34

Theoretical Guarantees

With probability 1 − 𝛿,	returns N𝑛	satisfies

Proof: Apply Chebychef’s inequality

𝑃 𝑋G − 𝜇H ≥ 𝜖 ≤
𝜎H9

𝑁𝜖9
⇒ 𝑁 ≥

𝜎H9

𝜖9

followed by Chernoff bounding.

35

1	 − 𝜖 𝑛 ≤ [𝑛 ≤ 1 + 𝜖 𝑛	

Merging

• For two stream 𝑆% and 𝑆& use same set of
hash functions
– Stream 𝑆A has sketch (𝑦)A , … , 𝑦>A)

• For each j ∈ 𝑘 ,	 find the combined sketch as:
– 	yI = 	min(𝑦6), 𝑦69)	

• Gives estimate of 𝑆% ∪ 𝑆&
36

References:

• Primary reference for this lecture
• Lecture notes by Amit Chakrabarti: http://www.cs.dartmouth.edu/~ac/Teach/data-

streams-lecnotes.pdf

http://www.cs.dartmouth.edu/~ac/Teach/data-streams-lecnotes.pdf
http://www.cs.dartmouth.edu/~ac/Teach/data-streams-lecnotes.pdf
http://www.cs.dartmouth.edu/~ac/Teach/data-streams-lecnotes.pdf
http://www.cs.dartmouth.edu/~ac/Teach/data-streams-lecnotes.pdf
http://www.cs.dartmouth.edu/~ac/Teach/data-streams-lecnotes.pdf

