CS60021: Scalable Data Mining

Streaming Algorithms

Data Streams

* In many data mining situations, we do not know the entire data
set in advance

* Stream Management is important when the input rate is controlled
externally:
— Google Trends
— Twitter or Facebook status updates

 We can think of the data as infinite and
non-stationary (the distribution changes
over time)

The Stream Model

* Input elements enter at a rapid rate,
at one or more input ports (i.e., streams)
— We call elements of the stream tuples

* The system cannot store the entire stream
accessibly

* Q: How do you make critical calculations about
the stream using a limited amount of
(secondary) memory?

General Stream Processing Model

Ad-Hoc
Queries
...1,5,2,7,0,9,3 — Standing
Queries
. anvtty,hb =— — Output
Processor
...0,0,1,0,1,1,0 =—>
+———time P
Streams Entering.
Each is stream is
composed of N
elements/tuples Limited
N
Working
Storage Archival
__ Storage

~_

Reservoir Sampling

Maintaining a fixed-size sample

* Problem: Fixed-size sample
e Suppose we need to maintain a random
sample S of size exactly s tuples
— E.g., main memory size constraint

Why? Don’t know length of stream in advance

* Suppose at time n we have seen n items
— Each item is in the sample S with equal prob. s/n

How to think about the problem: say s = 2

Stream:ixcyﬁkcdeg...
J

At n= 5, each of the first 5 tuples is included in the sample S with equal prob.
At n= 7, each of the first 7 tuples is included in the sample S with equal prob.

Impractical solution would be to store all the n tuples seen
so far and out of them pick s at random

Solution: Fixed Size Sample
* Algorithm (a.k.a. Reservoir Sampling)
— Store all the first s elements of the streamto S

— Suppose we have seen n-1 elements, and now
the nth element arrives (n > s)
* With probability s/n, keep the nt" element, else discard it

* If we picked the nt" element, then it replaces one of the
s elements in the sample S, picked uniformly at random

* Claim: This algorithm maintains a sample §
with the desired property:

— After n elements, the sample contains each element seen
so far with probability s/n

Proof: By Induction

 We prove this by induction:
— Assume that after n elements, the sample contains each
element seen so far with probability s/n

— We need to show that after seeing element n+1 the
sample maintains the property
» Sample contains each element seen so far with probability s/(n+1)

e Base case:

— After we see n=s elements the sample S has the desired
property
» Each out of n=s elements is in the sample with probability s/s = 1

Proof: By Induction

Inductive hypothesis: After n elements, the sample S contains
each element seen so far with prob. s/n

Now element n+1 arrives

Inductive step: For elements already in S, probability that the
algorithm keepsitin Sis:

(-

Element n+1 Element in the
not discarded sample not picked

So, at time n, tuples in S were there with prob. s/n

Element n+1 discarded

Time n—n+1, tuple stayed in S with prob. n/(n+1)
s, __3
n n+l n+1

So prob. tupleisin Sattime n+1 =

Bloom Filters

Querying Set Membership

IP seen by switch?

h 10.0.21.102

12

Exact Solutions

* Universe U, but need to store a set of n items, n <
|U].

* Hash table of size m:
— Space O(m + nlog(|U|))

— Query time 0(%)

Exact Solutions

 Universe U, but need to store a set of n items, n K
|U].
* Hash table of size m:
— Space O(m + nlog(|U|))
— Query time 0(%)
* Bit array of size |U]|
— Space |U].
— Query time 0(1).

Querying, Monte Carlo style

In hash table construction, we used random hash functions
— we never return incorrect answer
— query time is a random variable
— These are Las Vegas algorithms

In Monte-Carlo randomized algorithms, we are allowed to
return incorrect answers with (small) probability, say, 0

15

Bloom filter

[Bloom, 1970]

 Abit-array B, |B| = m
* k hash functions, h{, hy, ..., hy, each h; € U - |m]

16

Bloom filter

 Abit-array B, |B| = m
* k hash functions, h{, hy, ..., hy, each h; € U - |m]

17

Operations

* Initialize(B)
— fori € {1,..m}, B[i]=0

* Insert (B, x)
— fori €{1,..k}, Blh;(x)] =1

* Lookup (B,x)
— If Aieqs,.. iy B[Ri(x)] , return PRESENT, else ABSENT

18

Bloom Filter

If the element x has been added to the Bloom filter, then

Lookup (B, X) always return PRESENT

19

Bloom Filter

If the element x has been added to the Bloom filter, then

Lookup(B, X) always return PRESENT

* If x has not been added to the filter before?
— Lookup sometimes still return PRESENT

Sl

20

Designing Bloom Filter

Want to minimize the probability that we return a
false positive

Parameters m = |B| and k = number of hash
functions

k =1 = normal bit-array

What is effect of changing k?

Effect of number of hash functions

* Increasing k

— Possibly makes it harder for false positives to
happen in Lookup because of Ajegq gy B[hi(x)]

— But also increases the number of filled up
positions

 We can analyse to find out an “optimal k”

False positive analysis

* m = |B|, nelements inserted

* If x has not been inserted, what is the

probability that Lookup (B, x) returns
PRESENT?

False positive analysis

* m = |B|, nelements inserted

* If x has not been inserted, what is the

probability that Lookup (B, x) returns
PRESENT?

* Assume {hq, h,, ... h;} are independent and
Prih;(1) =j]| = —for all positions j

False positive analysis

Probability of a bit being zero:
kn

1 kn
PB-=O=(1——) ~e m
[j] - €
The expected number of zero bits is given by:
me—kn/m.

knk

Pllookup(B,x) = PRESENT] = (1 —e m

We can choose k to minimize this probability.

Choosing number of hash
functions

—kn/m

° p = e
* Log (False Positive) =

log(1 — p)* = klog(1 —p) = ——log(p) log(1 - p)

Minimized at p = %, i.,e. k = mlog(2)/n

‘I 0.2 04 06 0.8]1_"||
0.1 I‘-,l ‘,""
0.4 \ /

Bloom filter design

* This “optimal” choice gives false positive =
2—m log(2)/n

* If we want a false positive rate of § , setm =
[log(%)n]

log?(2)

Example: If we want 1% FPR, we need 7 hash functions
and total 10n bits

27

Applications

Widespread applications whenever small false positives are
tolerable

Used by browsers

— to decide whether an URL is potentially malicious: a BF is used in browser, and
positives are actually checked with the server.

Databases e.g. BigTable, HBase, Cassandra, Postgrepsql use BF
to avoid disk lookups for non-existent rows/columns

Bitcoin for wallet synchronization....

Handling deletions

e Chief drawback is that BF does not allow

deletions
[Fan et al 00]

* Counting Bloom Filter

— Every entry in BF is a small counter rather than a single bit
— Insert(x) increments all counters for {h;(x)} by 1

— Delete(x) decrements all {h;(x)} by 1

— maintains 4 bits per counter

— False negatives can happen, but only with low probability

CUCKOO FILTERS

Slides taken from Fan, Andersen, Kaminsky, Mitzenmacher.

Basic ldea: Store Fingerprints in Hash Table

* Fingerprint(x): A hash value of x

— Lower false positive rate g, longer tingerprint

31

FP(a)

FP(c)

FP(b)

N g 2O

Basic Idea: Store Fingerprints in Hash Table

* Fingerprint(x): A hash value of x
— Lower false positive rate g, longer fingerprint

 Insert(x):
— add Fingerprint(x) to hash table

O:
2 FP(a)
3:
4: FP(c)
O
6: FP(b)
/:

32

Basic Idea: Store Fingerprints in Hash Table

« Fingerprint(x): A hash value of x

— Lower false positive rate g, longer fingerprint
Lookup(x) = found

 Insert(x):
— add Fingerprint(x) to hash table

« Lookup(x):

— search Fingerprint(x) in hashtable

33

N ok 0o

il

FP(a)

FP(c)

FP(b)

Basic Idea: Store Fingerprints in Hash Table

Fingerprint(x): A hash value of x
— Lower false positive rate g, longer fingerprint

Insert(x): Delete(x)

— add Fingerprint(x) to hash table “

Lookup(x):

— search Fingerprint(x) in hashtable

Delete(x):
— remove Fingerprint(x) from hashtable

How to Construct Hashtable?

34

N ok 0o

il

FP(a)

FP(c)

FP(b)

Convention Hash Table: High Space Cost

« Chaining :
bkt
pkt1 | e—sl FP(1) |]
bkt2 '

\
l’ \ 4 1\

7P(z) o] FP(C)]
-~ N /—q\\

/ _’,’, \~ _ ,/' \xi\
Lookup(x) =
 Pointers =

low space utilization

37

Linear Probing

LOOKUP(X) ==ae ____ PP

Tz | EP(e)
-~ FP(d)

Making lookups O(1) requires large
% table empty =>»
low space utilization

Compare multiple fingerprints
sequentially =»
more false positives

Standard Cuckoo Requires Storing Each
ltem

Insert(x)

N o o O
O

39

Standard Cuckoo Requires Storing Each
ltem

Insert(x)

~
\~~
~

O
N
~~

X
~—"

N o o O
O
0

40

Standard Cuckoo Requires Storing Each
ltem

Insert(x)

O
N
~~

X
~—"

N o o O

S

\
R4

20
-
"

N
S
~

-
-
————
-

Rehash c: alternate(c) = 1
Kick ¢ to bucket 1

Standard Cuckoo Requires Storing Each

Insert(x)

O
N
~~

X
~—"

N o o O

ltem

A Insert complete
»° (or fail if MaxSteps reached)

*>s. Rehash c: alternate(c) = 1
/2 Kick ¢ to bucket 1

> Rehash a: alternate(a) = 4
--==""" Kick a to bucket 4

Challenge: How to Perform Cuckoo?

« Cuckoo hashing requires rehashing and displacing existing
items

0:

1: -

2: [FP(o T

3 o) ‘) Kick FP(c) to which bucket?
4: 1 FP(c) ‘VZ::

5: ™3 Kick FP(a) to which bucket?
6: | FP(a) ===~

7

With only fingerprint,

how to calculate item’s alternate bucket?

Partial-Key Cuckoo

« Standard Cuckoo Hashing: two independent
hash functions for two buckets
bucketl = hash; (x)
bucket2 = hash, (x)

« Partial-key Cuckoo Hashing: use one bucket
and fingerprint to derive the other [Fan2013]

bucketl = hash (x)
bucket2 = bucketl & hash (FP(x))

To displace existing fingerprint:
alternate (x) = current(x) ¢ hash(FP(x))

[Fan2013] MemC3: Compact and Concurrent MemCache
with Dumber Cd’ching and Smarter Hashing

Partial Key Cuckoo Hashing

* Perform cuckoo hashing on fingerprints

FP(b)

FP(c)

FP(a)

IS L o L A

f”
-
-
“

~
SS
S
~

-
-
———‘
-

Can we still achieve high space utilization

with partial-key cuckoo hashing?

Cuckoo Filter Insertion

Algorithm 1: Insert (x)

f = fingerprint(x);

i1 = hash(x);

i, = i1 ® hash(f);

if bucket[i;] or bucket[i,] has an empty entry then
add f to that bucket;

L return Done;

/| must relocate existing items;
i = randomly pick i; or i»;
for n = 0; n < MaxNumKicks; n++ do
randomly select an entry e from bucket[i];
swap f and the fingerprint stored in entry e;
i =i @ hash(f);
if bucket[i] has an empty entry then

add f to bucket[i];
\\ return Done;

/| Hashtable is considered full;
return Failure;

Cuckoo Filter Lookup

Algorithm 2: Lookup (x)

f = fingerprint(x);

i1 = hash(x);

i, = i; @ hash(f);

if bucket[i;] or bucket[i,] has f then
| return True;

return False;

Cuckoo Filter Deletion

Algorithm 3: Delete (x)

f = fingerprint(x);

i1 = hash(x);

i, = i; @ hash(f);

if bucket[i;] or bucket[i,] has f then
remove a copy of f from this bucket;

L return True;

return False;

Fingerprints Must Be “Long” for Space Efticiency

s ' ¢ e ———
=EEN PR B \Vhen fingerprint > 5 Dbits,
S I high table space utilization
8 0'4 - :: VVVVVVVV : : :
@p) .,f' : : : :
L g2l A I —— T |
e B Table size: n=128 million entries
— ; : : :

O i i i j

0 5 10 15 20

f: fingerprint size in bits

« Fingerprint must be Q(log(n)/b) bits in theory
— n: hash table size, b: bucket size

Semi-Sorting: Further Save 1 bit/item

« Based on observation:
— A monotonic sequence of integers is easier to compress!Bonomi2006]

e Semi-Sorting:
— Sort fingerprints sorted in each bucket
— Compress sorted fingerprints

Sort
21 |97 |88 |04 > |04 88 |97

fingerprints fingerprints
In a bucket

+ For 4-way bucket, save one bit per item
-- Slower lookup / insert

[Bonomi2006] Beyond Bloom filters: From approximate membership checks to ap-
proximate state machines.

50

Space Efficiency

More Space
I
20 F

sp o

10 F

More False Positive

O L L L
0.001% 0.01% 0.1% 1% 10% '

e: target false positive rate

bits per item to achieve €

Space Efficiency

More szeslc Bl il
- oom filter
I[<

20

15

10

""""""""""""""""""""""""""""""""

_ _ More _False Positive
0.001% 0.01% 0.1% 1% 10°H

0

bits per item to achieve €

e: target false positive rate

52

Space Efficiency

More Spac 5 "
Izs - oom filter

W o ke Cuckoo filter

O)

0 .

QD

c .

S 15

S

e
10 |

E ,,,,,,,,,,,,,,,,,

T NN | 0\cr bound TS

= | By e

g 5 T

2 More False Positive

= 0 : : : ,
0.001% 0.01% 0.1% 1% } go/—

e: target false positive rate

53

Space Efficiency

More Space .
I 25 Bloom filter
| : e)
$ 20 Cuckoo filter more CompaCt
2 S than Bloom filter
6 15 k . at 3%
S _J
1®)
E 10 B
_40__,) Lower bound
o 5} Cuckoo filter + |-
Q semisorting [o
_f@ More False Positive
a0 : : : ' -
0.001% 0.01% 0.1% 1% 10%

e: target false positive rate

54

14

12

10

Lookup Performance (MOPS)

11.93 11.92 W Hit ® Miss 12.04

Cuckoo Cuckoo + d-left counting blocked Bloom

semisort Bloom Bloom (no deletion)
(no deletion)

Cuckoo filter is among the fastest regardless workloads.

16
14
12
10
g |

insert tput (MOPS)

0.4 0.6
o table occupancy
Cuckoo filter has decreasing insert rate, but overall

Is only slower than blocked Bloom filter.

References:

Mining massive Datasets by Leskovec, Rajaraman, Ullman, Chapter 4.

Primary reference for this lecture
e Survey on Bloom Filter, Broder and Mitzenmacher 2005,
https://www.eecs.harvard.edu/~michaelm/postscripts/im2005b.pdf

Others
* Randomized Algorithms by Mitzenmacher and Upfal.

Cuckoo filter: Fan, Bin, Dave G. Andersen, Michael Kaminsky, and Michael D.
Mitzenmacher. "Cuckoo filter: Practically better than bloom." In Proceedings of
the 10th ACM International on Conference on emerging Networking
Experiments and Technologies, pp. 75-88. 2014.

57

https://www.eecs.harvard.edu/~michaelm/postscripts/im2005b.pdf

