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Submodular Subset
Selection

Slides taken from 1JCAI 2020 tutorial by
Rishabh lyer and Ganesh Ramakrishnan



Combinatorial Subset Selection Problems

f:2V 3R Choose Subset A C V

f(A) is maximum

General Set function Optimization: very hard!

What if there is some special structure?



Submodular Functions

F(AU V) — f(A) > f(BUV) — f(B), f AC B
f. f. Negativeof a
Submodular
vy

.. Functionis a
‘ Supermodular
f = # of distinct colors of balls in the urn.

Function!




Equivalent Definitions of Submodularity

. Diminishing gains: forall A, B CV ‘ +es
F(AUV) — f(A) > f(BUV) — f(B), if AC B

- Union-Intersection: forall A, B CV
f(A)+ f(B) = f(AuB) + f(AN B)

oo-® @ L



Equivalent Definitions of Submodularity

Lemma: The above definitions for submodularity are equivalent.

Proof: We first assume that for all A, B C S, we have
f(ANB) + f(AUB) < f(A) + f(B).
Suppose that A C B, then for any i € S\ B, we have that

f(AU{i}) + f(B) =2 f(AUBU{i}) + f((AU{i}) N B)
= f(BU{i}) + f(A),

where the equality holds since A C B.



Equivalent Definitions of Submodularity

We now assume that

f(Au{i}) — f(A) > f(BU{i}) — f(B)
foreach ACBC Sandie S\ B.
Consider any two sets A and B. If A\ B = (), then we have A C B, and thus

f(ANB) + f(AUB) = f(A) + f(B) < f(A) + f(B).

Otherwise, let B\ A = {v1,v9,...,v,} and denote X; = {v1,ve,...,v;} and Xy = 0. Since
(ANB)U X; C AU X; We thus have
fF((ANB)U X; U{vita}) — F((ANB)UX;) > f((AU X;) U{vita}) — F((AUX3),

that is
F((ANB)U Xiy1) — fF((ANB)UX;) > f(AU Xi41) — fF(AU X).

Summing from ¢ = 0 to n — 1, and we yield
Combined with X,, = B\ A, we have

f(ANB) + f(AUB) < f(A) + f(B).



Modular Functions

* each element e has a weight w e
F(S) = i
es

e

ACB
F(AUe) - F(A)=w(e) = F(BUe)— F(B)=w(e)

Modular Functions are both submodular and supermodular!



Monotone Submodular Functions

¢ A set function is called monotonic if
ACBCV = F(A) < F(B)

¢ Examples:
® Influence in social networks [Kempe et al KDD "03]

*® For discrete RVs, entropy F(A) = H(X,) is monotonic:
Suppose B=A U C. Then
F(B) = H(X,, Xc) = H(X,) + H(X. | X,) > H(X,) = F(A)

® Information gain: F(A) = H(Y)-H(Y | X,)



Instantiations of Submodular Functions

(] Representation Functions
U Facility Location Function (k-mediods
clustering)
O Graph Cut Family, Saturated Coverage

U Diversity Functions

W Dispersion Functions (Min, Sum, Min-
Sum)
[ Determinantal Point Processes

U Coverage Functions
[ Set Cover Function

[ Probabilistic Set Cover Function
[ Feature Based Functions

O Importance Functions
] Modular Functions

] Information Functions
] Mutual Information

] Entropy

] Discounted Cost Functions
] Clustered Concave over Modular Functions

] Cooperative Costs and Saturations

J Complexity Functions
] Bipartite Neighborhood Functions



Representation Functions

AR
S °8
o
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Facility Location D icy MAXke X Sik
Saturated Coverage EEieVZmin{ZjeX ;wai} Representation Functions
Graph Cut /\ =A% jeX Sij - i,jeX Sij . .
0 Picks Centroids

Similarity Kernel lyer 2015, Kaushal et al 2019, Tschiatchek et a2014, ...



Diversity Functions: Dispersion
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Dispersion Min ming je x k1 dii
Dispersion Sum > kiex Bkl
Dispersion Min-Sum > kex Mingex dig

Dispersion Sum and Dispersion Min Not Submodular!

Diversity Functions
Picks items as different as possible!

Dasgupta et al 2013, Chakraborty et al 2015



Coverage Functions

Cat Dog Bird Man Beach.....
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Set Cover Function

f(X) = w(UiexU;), .
1 Coverage Functions
Concepts Covered by Instance i

Mall &~

s Female

Select instances which “cover” dconcepts
Wolsey et al1982, ...
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Feature Based Functions
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Feature Based Functions

fiea(S) = Y _ 9(mu(S)).
uel t

Total Contribution of Feature u in the Set of Images S

g is concave function

Achieve
Uniformity in
Feature
Coverage

Wei-lyer et d2014...



Information Functions

X1,..., X, discrete random variables: X, € {1,...,m}

F(S) = H(Xg) = joint entropy of variables indexed by S

ACB,e¢ B F(AUe)— F(A) > F(BUe) — F(B)??

H(Xave) — H(XA) = H(X.|Xa)

< H(X.|Xp) “information never hurts”

= H(Xpue) — H(XB)

discrete entropy is submodular!
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Entropy
Mutual Information
Information Gain

Krause et al2008, ...



Master Optimization Problem

Set Function F Models:
P Selected set e

maXF(A) iversity |

ACY * Representation
Selection cost—— Budget * Coverage
\ —Budge
subject to C(A) < B * Information
* |mportance

F = Monotone Submodular,
Non Monotone Submodular,
Dispersion Functions,

We shall study this and variants of this Master Optimization Problem!



Monotone Submodular Maximization

max F(S) st. |S| <k

What is the Constraint?
C(S) = |S]

* greedy algorithm:

So =10

fori=0, ..., k-1

= F(S; U
o SIS Tiag (S; U{e})

Sprq = Byl {6*}

How “good

Mis By T

Approximation

Guarantee!



How good is Greedy in Practice?

empirically:
9

sensor placement

N

A O O

information gain

1 2 3 4 5
Number of sensors placed



How good is Greedy in Theory?

max F(S) st. |S| <k

Theorem (Nemhauser, Fisher, Wolsey "78)

F monotone submodular, S;  solution of greedy. Then

F(Sy) > (1_2) F(Sj)\

No Poly-time algorithm can do better than this in the worst case!

optimal solution




Proof (Nemhauser et al 1978)

Let:
e A; = (v1,v9,...,v;) be the the chain formed by the greedy algorithm, as defined
above
« A* = (v}, v},...,v}) be the optimal solution, in an arbitrary order

« f be a monotone submodular function. Let f > 0 (Update on 04/25/2019: | thought
this was w.l.0.g., but Andrey Kolobov pointed out that we actually need f to be non
negative)

« OPT = f(A*), the value of the optimal solution.

We will prove that

f(Ax) > (1 — 1/e)OPT

Source: https://homes.cs.washington.edu/~marcotcr/blog/greedy-submodular/



Proof (Nemhauser et al 1978)

For all 2 < k, we have:

f(A*) < f(A* U A ) Monotonicity
+ZA vi|Ai U{v],v3,...,v5 1 })
) + Z A(z|A;) Using submodularity
zeA”
< f(4;) + Z A(vis1|4;) Vi1 = argmaz,ey 4, A(v]4;)
zeA”

= f(Ai) + kA(viy1]As)

Rearranging the terms, we have proved that

A(vi|41) = 1 (OPT — f(47)

Source: https://homes.cs.washington.edu/~marcotcr/blog/greedy-submodular/



Proof (Nemhauser et al 1978)

-

\

Part |

Plugging this into our previous equation, we have:

=
=

\ / Part I

1 k
Now we define §; = OPT — f(A;). This implies = O < <1 - E) do
0; — div1 = f(Ait1) — f(Ai) = A(vig1|4i)

k
> & < (1— %) OPT < l()PT
e
1

0; = Ot 2 5(52) |:> OPT — f(Ax) < EOPT
1
div1 < (1— E)(SZ I:> f(Ag) > (1 — é) OPT

AN

~

/

Source: https://homes.cs.washington.edu/~marcotcr/blog/greedy-submodular/



Monotone Submodular — Budget Constraints

max F(S) s.t. Zc(e) <B

1. run greedy: Sgr

2. run a modified greedy: S

ecS

mod

F(Sz U {6}) — F(Sz)

e’ = argmax
3. pick better of Sy, Shioa

=» approximation factor:

c(e)

even better but less fast:
partial enumeration
(Sviridenko, 2004) or
filtering (Badanidiyuru &
Vondrak 2014)

Sviridenko 2004

* Run the cost-sensitive
greedy algorithm starting
with all possible initial sets
{i.i.k}

« 0(n3)initial complexity

* (1-1/e)approximation!

Sviridenko 2004, Leskovec et al 2007




Summary: Greedy Algorithm Framework

Monotone Submodular Function

!
max f(S)
SCV.o(S)<B

Cost of Summary Subset S (e.g. size)

Problem Formulation

Initialization S « 0.

repeat

Pick an element v* € argmax, ¢, s
Update S+ Su v*

until Reaching the budget, i.e., ¢(S) > B

f(VvUS)—£(S)
c(v)

Greedy Algorithm




Non-Monotone Submodular Functions

max F(S) s.t. |S| <k

Start with Yy = ()
for:=1 to k do

Let M; = argmaxycy\y, ;,|X|=k ZUEX f(U\Yz'—l);

Choose y as a uniformly random element in M;;

| K= ¥ g Ul

return Y.

Theorem (Buchbinder et al 2014): The Randomized Greedy Algorithm achieves a 1/e approximation
guarantee for Non-Monotone Submodular Maximization subject to cardinality constraints!



Data subset selection



Make ML Data Efficient and Robust

Data Model Model Model
Preparation Training Validation Deployment
1. Data Labeling 1. Mo_dgl Selection 1. Deployment Infra
2. Feature Engineering 2. Training Budget Often repeated for 2. latency & Memory

3. Batch sizes, Partitions hyper-parameter tuning

Production Systems Constraints
Data Labeling -=> Time Consuming, Expensive, Noisy under these constraints
Feature Selection => Latency & Memory without sacrificing
Model Training => Compute Intensive and Time Consuming on accuracy?
Hyper-Parameter Tuning/NAS => Very Time Consuming

Distribution Shift => Deployment vs Training

Can we train Models

kLN pRE



Data Subset Selection Setup

A Machine Learning model characterized by model parameters {

Training Data: {(a’j,” y@-),i c Z/{} Training log-likelihood function: LL71(8,U)

Training a machine learning model often reduces to finding the parameters that
maximizes a log-likelihood function for given training data empirically.

0* = argmax LL7(0,U)
0
Validation Data: {(x;,%;),% € V} Validation log-likelihood function: LLy (8,V)

Goal: Select a subset S C U such that the resulting model performs the best!



Requirements for optimal subset
selection

1. The subset selection algorithm needs to be as fast as possible.
» Subset Selection time <<<< Full training time

Example: Subset selection algorithm with negligible time complexity
Training on 10 % Subset wmmmm 1() 3¢ Faster training

2. Theoretical guarantees of subset selection algorithm.
e Can we show theoretical guarantees for subset selection algorithms?



Approaches for Data Subset Selection

[ Several different kinds of approaches studied in literature:
0 Approach 1: Use Submodular Functions as proxy functions for data subset selection

O Approach 2: Choose data subset which approximates the gradient of the entire dataset

O Approach 3: Choose data subset which approximates the performance on full training
dataset (or validation set) as a bi-level optimization!

UApproach 4: Choose data subset which minimizes a suitable divergence (e.g. KL
divergence) between the distribution induced by the subset and full data!
O Types of Data Selection
O Supervised (Using the labels)
O Unsupervised (No access to labels)
O Validation based (Access to a validation set for focusing on generalization)



|dea: Gradient Matching/ CoreSets

Can we obtain a weighted

gradient of a subset of points that
approximates the full gradient?

> wiVyLip(0) ~ VoL(0)

1€ Xy

Sivasubramaniam & Killamsetty et. al. 2021, Mirzasoleiman et al 2020



Gradient Matching: Main Idea

The theorem indicates that an effective data selection algorithm
should try to have a low error Err(w', X, L, L7, 6,) for

t=1,---.T. Thus, we can pose the problem as,
w', X; = min Err(w,X,L,Lr,0;)
w,X:| X |<k

: t ]
— min Z w:Valt(0.) — Val.(6
w.‘X':|X|§/f||Z,EXt i Vo T< t) 0 ( f)”

Sivasubramaniam & Killamsetty et. al. 2021



Directly Optimizing Gradient Error: GradMatch

Define the regularized version of our objective:

E\(X) =min|| > wiVeLi(8:) — VoL (8| + Allw'|?
1€X¢

\ - 7

E)\(Xt,wt)

This problem can be solved efficiently using Orthogonal Matching
Pursuit (OMP) described as,

1.

Sl g0 B T

Find projection of r = VyL%.(6,) for each i € W along VyL(0;) and
chose the 7 with whom projection is maximum and add it X

Solve linear regression problem to find w! for i € Xs.

Set r = V@L(@t) — ZieXt w%VQL?T(Qt)

Repeat the steps with new r until the || < € or | X| < k(budget)
Return X, wy

Sivasubramaniam & Killamsetty et. al. 2021



Orthogonal Matching Pursuit

The OMP algorithm

Algorithm 1: OMP(A, b)

Input: A)b

Result: x;
1 Initialization ryo = b, A = &;
2 Normalize all columns of A to unit Ly norm;
3 Remove duplicated columns in A ;
4 fork=1,2,...do
5 Step-1. A, = argmax |(aj, rx—1)|;

JEA 1

Step-2. Ay = A1 U {)\k};
Step-3. xi(i € Ag) = argmin ||[Ap, x — bll2, xx(i ¢ Ax) =0;

8 Step-4. E)k = Axy;

9 Step-5. rp +— b — f)k;
0 end




Convex DSS



Aim

* We study the problem of data efficient training of
autonomous driving systems.

* Training using many frames on straight road sections may
not be necessary. Frames at the turns turn out to be useful.

[ S—

I | IA " | I~| _—

REDUNDANT INFORMATIVE
Method Train One-Turn Test One-Turn
Uniform Skip 3/10 5/10

In the context of edge device deployment, multi-criteria online
subset selection (OSS) framework can be useful in selecting
iInformative frames, essential for an end-task.



Subset selection on Edge devices

Incoming video -_u (Zl(iud
frames/ data - transfer ~ <
points D

— —_
e e - -

A
-
~— - |
!
!
]
1

Reduced video / | 1

I
|
| dataset :
|
Pairwise Pointwise | :
Distances Losses : I
I Task specific :
B N : models
Multi-Criteria OSS , E.g. driving model, '
| semantic |
1 | segmentation model, I
' |
' |
Selected incoming video ] |
frames / data points ‘Permanently Stored Data |
7/
~ -

I Adding to existing data




High Level |dea

* Given a compression ratio, find out representatives which
have the least dissimilarity with the left-out elements
besides having the highest task-specific loss.



Problem Setup

o X;:the set of incoming datapoints at time t (Size m)
o D:set of all data points (Size N)
e R;:Reduced set of data at time t

o d;;: Distance between data points | and j.

o z;j: Indicator variable indicating that datapointiis a
representative for datapoint j.



Convex Subset Selection

o Original formulation in set notation:

min A|S| + E min d;;,
SCD L ics
Jj€D

 Formulation using indicator random variables z;;:

{Hzﬂ% A I(”[Z'Ll Zig v ]||p)‘|‘zzdz‘jzi

. . />i€D JED €D
Size regularizer

N
s.t. zi; €{0,1}, Y z;=1, Vi,j€D.
i=1

o Convex relaxation:
0< Zij <1



Online Subset Selection

e Attimet:
R;_q: old set (denoted by superscript o)
X;:in the new set (denoted by superscript n)
R;: the new reduced set that we are trying to compute using z;;
Ry = Ry, U{i € X¢|Z;; = 1}

e Revised formulation:

enc Z Z don on+ Z Z dnn Zn’

1€€, JEDx 1€Dn jJEDn

o et S

i€Dn €0 = Re—1
D, =X

s: 4 2"

Zz —I—Zz"”—l Vje€D,,

iego ZED



High Level |dea

* Given a compression ratio, find out representatives which
have the least dissimilarity with the left-out elements
besides having the highest task-specific loss.

* Highest task-specific loss ensures having situational task:
needed to be learnt more by the model.



TMCOSS

Adopts a facility location objective involving multiple criteria
|R,|

min €(z, 2)s . 1. Zzw+2z’]—l 2,22 € [0,1]; Z“[Zu 22, < frac*m

Objective function Constraint 1 Constraint 2 Compression Ratio
Z.Q — 1 Denotes j from existing set o is a representative of element i from incoming set n
Y
Zg = 1 Denotes j from incoming set n is a representative of element i from incoming set n
m R |R,|
l], l;’ = p( Z Z Zodo(t) + Z Z”d”(t)) —(1-=p)( Z SO * L" + Z Sn *L”) where, S7 = —mln(e Z ), 8" = —mln(e Zzl;’)
i=1 j=1 i,j=1 Jj=1 j=1 i=1

N~ S

e Representative power of element j
Task specific Loss thresholded by €

Dissimilarity



Justification for thresholding

Theorem 1 Let zj; and z7; be the optimal solution for for- Corollary 1.1 Let 2°. and = b(’ the optimal solution for

mulation 1. A new fl(llll(’ ] € X4 is selected as a repre- : 4
e 8 L ; NG : ormulation 1. A new fram is selected as a rep-
sentative frame for at least one incoming frame i € X4, f rmuta 11. A ne f’a € J E Xt+1 elected as a rej

i.e. 25 = 1, only if BOTH these conditions hold: resentative frame for at least one incoming frame i € X1,
ie. zj5; =1, only if BOTH these conditions hold:

~q

* For some incoming frame i € X¢41, QF < Q. for

all j' € Xey1and j' # j * L} > LY forall j’ € X¢y1 and j' # j

. N 9 : o b
1"0:1 smom’ :nunnlnf _/n:me i € X, QU < . In P R | S ||
125 1 QU AT 5z m 51]le g > ||zv_z||1

125 111

where k = argmin;) ", 22.Q%,, and |27,

where k = argmin;y i, 20;Q7 5, and |z7||1 =
i 1":] 1,7 " n
Zi’:l Zit g

Z]’

Multi-criteria OSS (MCOSS)?

Qf =pd; — (1 —p)L Q) = pdi; — (1 — p)L?

m |Rt| m m
0 nn n n
min >, > 2505+ D, j0f +4 ) a7,
PR =1 j=1 i,j=1 j=1

|R;|
5.t Zz +sz—1 Vi € X122 € [0,1], Vi, j

1. Soumi Das, Sayan Mondal, Ashwin Bhoyar, Madhumita Bharde, Niloy Ganguly, Suparna Bhattacharya, Sourangshu Bhattacharya, "Multi-criteria onlineframe-subset
selection for autonomous vehicle videos." Pattern Recognition Letters 133 (2020): 349-355.
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