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CPU VS GPU
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Spot the CPU!
(central processing unit)
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Spot the GPUs!
(graphics processing unit)

This image is in the public domain
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CPU vs GPU
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# Cores Clock Speed Memory Price

CPU
(Intel Core  
i7-7700k)

4
(8 threads with  
hyperthreading
)

4.4 GHz Shared with system $339

CPU
(Intel Core  
i7-6950X)

10
(20 threads  with  
hyperthreading
)

3.5 GHz Shared with system $1723

GPU
(NVIDIA
Titan Xp)

3840 1.6 GHz 12 GB GDDR5X $1200

GPU  
(NVIDIA  
GTX 1070)

1920 1.68 GHz 8 GB GDDR5 $399

CPU: Fewer cores,  
but each core is  
much faster and  
much more  
capable; great at  
sequential tasks

GPU: More cores,  
but each core is  
much slower and  
“dumber”; great for  
parallel tasks



CPU vs GPU in practice
(CPU performance not
well-optimized, a little unfair)

66x 67x 71x 64x 76x

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 27, 2017
Data from https://github.com/jcjohnson/cnn-benchmarks
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CPU vs GPU in practice
cuDNN much faster than  
“unoptimized” CUDA

2.8x 3.0x 3.1x 3.4x 2.8x

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 27, 2017
Data from https://github.com/jcjohnson/cnn-benchmarks

Lecture 8 - 7



CPU / GPU Communication

Model  
is here

Data is here

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 27, 2017Lecture 8 -
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If you aren’t careful, training can  
bottleneck on reading data and  
transferring to GPU!

Solutions:
-Read all data into RAM
-Use SSD instead of HDD
-Use multiple CPU threads  to 
prefetch data



DEEP LEARNING FRAMEWORKS

Slides taken from:
Fei-Fei Li & Justin Johnson & Serena Yeung, Stanford University



Major DL Frameworks Today

Caffe
(UC Berkeley)

Torch
(NYU / Facebook)

Theano
(U Montreal)

TensorFlow
(Google)

Caffe2
(Facebook)

PyTorch
(Facebook)

Mostly these
Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 27, 2017Lecture 8 -

April 27, 2017

19

CNTK
(Microsoft)

Paddle
(Baidu)

MXNet
(Amazon)
Developed by U Washington, CMU, MIT,  
Hong Kong U, etc but main framework of  
choice at AWS

And others...



The point of deep learning frameworks
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(1) Easily build big computational graphs
(2) Easily compute gradients in computational graphs
(3) Run it all efficiently on GPU (wrap cuDNN, cuBLAS, etc)



Computational Graphs
x y z

*
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Numpy

Problems:
- Can’t run on GPU
- Have to compute  

our own gradients



Computational Graphs
x y z

*

a
+

b

Σ

c

PyTorch
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Computational Graphs
x y z

*
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+
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c

PyTorch

Define Variables to  
start building a  computational 
graph
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Computational Graphs
x y z

*
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PyTorch

Forward pass  
looks just like  numpy
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Computational Graphs
x y z

*
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PyTorch

Calling c.backward()  
computes all  gradients
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Computational Graphs
x y z

*
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PyTorch

Run on GPU by  
casting to .cuda()
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PyTorchNumpy



PyTorch (more detail)
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PyTorch: Three Levels of Abstraction

Lecture 8 -8181

• Tensor: Imperative ndarray,  but runs on GPU

• Variable: Node in a  computational graph; stores  data 
and gradient

• Module: A neural network  layer; may store state or  
learnable weights



PyTorch: Tensors
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PyTorch Tensors are just like numpy  
arrays, but they can run on GPU.

No built-in notion of computational  
graph, or gradients, or deep learning.

Here we fit a two-layer net using  
PyTorch Tensors:



PyTorch: Tensors
Create random tensors  
for data and weights
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PyTorch: Tensors

Forward pass: compute  
predictions and loss
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PyTorch: Tensors

Backward pass:  
manually compute  
gradients
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PyTorch: Tensors

Gradient descent  
step on weights
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PyTorch: Tensors

To run on GPU, just cast  
tensors to a cuda datatype!
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PyTorch: Autograd
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A PyTorch Variable is a node in a  
computational graph

x.data is a Tensor

x.grad is a Variable of gradients  
(same shape as x.data)

x.grad.data is a Tensor of gradients



PyTorch: Autograd
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PyTorch Tensors and Variables  
have the same API!

Variables remember how they were  
created (for backprop)



PyTorch: Autograd

We will not want gradients  
(of loss) with respect to data

Do want gradients with  
respect to weights
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PyTorch: Autograd

Forward pass looks exactly   
the same as the Tensor  version, but 
everything is a  variable now
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PyTorch: Autograd

Compute gradient of loss  
with respect to w1 and w2  (zero out 
grads first)
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PyTorch: Autograd

Make gradient
step on weights
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PyTorch: New Autograd Functions

Define your own autograd  
functions by writing forward  
and backward for Tensors

(similar to modular layers in A2)
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class ReLU(torch.autograd.Function):
    @staticmethod
    def forward(ctx, x):
        ctx.save_for_backward(x)
        return x.clamp(min=0)

    @staticmethod
    def backward(ctx, grad_y):
        x, = ctx.saved_tensors
        grad_input = grad_y.clone()
        grad_input[x < 0] = 0
        return grad_input



PyTorch: New Autograd Functions

Can use our new autograd  
function in the forward pass
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class ReLU(torch.autograd.Function):
    @staticmethod
    def forward(ctx, x):
        ctx.save_for_backward(x)
        return x.clamp(min=0)

    @staticmethod
    def backward(ctx, grad_y):
        x, = ctx.saved_tensors
        grad_input = grad_y.clone()
        grad_input[x < 0] = 0
        return grad_input



PYTORCH NN MODULE



PyTorch: nn

Higher-level wrapper for  
working with neural nets

Similar to Keras and friends …  
but only one, and it’s good =)
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PyTorch: nn

Define our model as a  
sequence of layers

nn also defines common  loss 
functions
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PyTorch: nn

Forward pass: feed data  
to model, and prediction  to loss 
function
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PyTorch: nn

Backward pass:  
compute all gradients
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PyTorch: nn

Make gradient step on
each model parameter

Lecture 8 - 1000
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PyTorch: optim

Use an optimizer for
different update rules

Lecture 8 - 1011



PyTorch: optim

Update all parameters  
after computing gradients
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PyTorch: nn
Define new Modules
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A PyTorch Module is a neural net  
layer; it inputs and outputs Variables

Modules can contain weights (as  
Variables) or other Modules

You can define your own Modules  
using autograd!



PyTorch: nn
Define new Modules

Define our whole model  
as a single Module

10Lecture 8 - 104

Fei-Fei Li & Justin Johnson & Serena Yeung

4



PyTorch: nn
Define new Modules

Initializer sets up two  
children (Modules can  
contain modules)
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PyTorch: nn
Define new Modules

Define forward pass using  
child modules and  
autograd ops on Variables

No need to define  
backward - autograd will  
handle it

10Lecture 8 - 106

Fei-Fei Li & Justin Johnson & Serena Yeung

6



PyTorch: nn
Define new Modules

Construct and train an  
instance of our model
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PyTorch: DataLoaders

A DataLoader wraps a  
Dataset and provides  
minibatching, shuffling,  
multithreading, for you

When you need to load  
custom data, just write  
your own Dataset class

10Lecture 8 - 1088



PyTorch: DataLoaders

Iterate over loader to form  
minibatches

Loader gives Tensors so you  
need to wrap in Variables

10Lecture 8 - 1099



PyTorch: Pretrained Models

Super easy to use pretrained models with 
torchvision  https://github.com/pytorch/vision

11Lecture 8 - 1100

https://github.com/pytorch/vision


Static vs Dynamic Graphs
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Static vs Dynamic Graphs
TensorFlow: Build graph once, then  
run many times (static)

PyTorch: Each forward pass defines  
a new graph (dynamic)

Build  
graph

Run each  
iteration

New graph each iteration

Lecture 8 - 120



Static vs Dynamic: Optimization

With static graphs,  
framework can  
optimize the  
graph for you  
before it runs!

Conv
ReLU
Conv
ReLU
Conv
ReLU

The graph you wrote Equivalent graph with
fused operations

Conv+ReLU
Conv+ReLU
Conv+ReLU

April 27, 2017



Static vs Dynamic: Serialization

Static
Once graph is built, 
can  serialize it and 
run it  without the code 
that  built the graph!

Dynamic
Graph building and 
execution  are intertwined, 
so always  need to keep 
code around
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Static vs Dynamic: Conditional

y =
w1 * x  
w2 * x

3

if z > 0  
otherwise
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Static vs Dynamic: Conditional

y =
w1 * x  
w2 * x

if z > 0  
otherwise

PyTorch: Normal Python

4Lecture 8 - 124



Static vs Dynamic: Conditional

y =
w1 * x  
w2 * x

if z > 0  
otherwise

PyTorch: Normal Python

TensorFlow: Special TF
control flow operator!
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Static vs Dynamic: Loops

yt = (yt-1+ xt) * w
y0

x1 x2 x3

+ * + * +

w

*
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Static vs Dynamic: Loops

y0

x1 x2 x3

+ * + * +

w

*
yt = (yt-1+ xt) * w

PyTorch: Normal Python
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Static vs Dynamic: Loops
TensorFlow: Special TF control flow

yt = (yt-1+ xt) * w

PyTorch: Normal Python

12Lecture 8 - 1288



Tensorboard
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Visualizing 
pytorch
 graphs



Visualizing pytorch graphs



ONNX EXPORT



ONNX

• Open neural network exchange
• Provides an open format for saving DL models in files
• Models can be saved from various tools

– Pytorch, Tensorflow, Scikit-learn

• Models saved in ONNX format can be executed in various 
platforms:
– Caffe2 – Python
– https://onnxruntime.ai/ 

https://onnxruntime.ai/
https://onnxruntime.ai/


Exporting Pytorch module to ONNX



ONNX File format



ONNX File format



Running ONNX models



References

• Deep Learning with Pytorch. Eli Stevens, Luca Antiga, Thomas 
Viehman, Manning publishers.

• Exporting a model from pytorch to ONNX and running using 
ONNX runtime: 
https://pytorch.org/tutorials/advanced/super_resolution_with_onnxruntime.html

• Tensorboard tutorial: 
https://pytorch.org/tutorials/intermediate/tensorboard_tutorial.html
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