
CS60021: Scalable Data Mining

Sourangshu Bhattacharya

CPU VS GPU

Slides taken from:
Fei-Fei Li & Justin Johnson & Serena Yeung, Stanford University

Spot the CPU!
(central processing unit)

This image is licensed under CC-BY 2.0

Lecture 8 -7

Fei-Fei Li & Justin Johnson & Serena Yeung

7

https://creativecommons.org/licenses/by/2.0/deed.en
https://creativecommons.org/licenses/by/2.0/deed.en
https://creativecommons.org/licenses/by/2.0/deed.en
https://creativecommons.org/licenses/by/2.0/deed.en

Spot the GPUs!
(graphics processing unit)

This image is in the public domain

Lecture 8 -8

Fei-Fei Li & Justin Johnson & Serena Yeung

8

CPU vs GPU

Lecture 8 -1111

April 27, 2017Fei-Fei Li & Justin Johnson & Serena Yeung

Cores Clock Speed Memory Price

CPU
(Intel Core
i7-7700k)

4
(8 threads with
hyperthreading
)

4.4 GHz Shared with system $339

CPU
(Intel Core
i7-6950X)

10
(20 threads with
hyperthreading
)

3.5 GHz Shared with system $1723

GPU
(NVIDIA
Titan Xp)

3840 1.6 GHz 12 GB GDDR5X $1200

GPU
(NVIDIA
GTX 1070)

1920 1.68 GHz 8 GB GDDR5 $399

CPU: Fewer cores,
but each core is
much faster and
much more
capable; great at
sequential tasks

GPU: More cores,
but each core is
much slower and
“dumber”; great for
parallel tasks

CPU vs GPU in practice
(CPU performance not
well-optimized, a little unfair)

66x 67x 71x 64x 76x

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 27, 2017
Data from https://github.com/jcjohnson/cnn-benchmarks

Lecture 8 - 6

CPU vs GPU in practice
cuDNN much faster than
“unoptimized” CUDA

2.8x 3.0x 3.1x 3.4x 2.8x

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 27, 2017
Data from https://github.com/jcjohnson/cnn-benchmarks

Lecture 8 - 7

CPU / GPU Communication

Model
is here

Data is here

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 27, 2017Lecture 8 -

April 27, 2017

8

If you aren’t careful, training can
bottleneck on reading data and
transferring to GPU!

Solutions:
-Read all data into RAM
-Use SSD instead of HDD
-Use multiple CPU threads to
prefetch data

DEEP LEARNING FRAMEWORKS

Slides taken from:
Fei-Fei Li & Justin Johnson & Serena Yeung, Stanford University

Major DL Frameworks Today

Caffe
(UC Berkeley)

Torch
(NYU / Facebook)

Theano
(U Montreal)

TensorFlow
(Google)

Caffe2
(Facebook)

PyTorch
(Facebook)

Mostly these
Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 27, 2017Lecture 8 -

April 27, 2017

19

CNTK
(Microsoft)

Paddle
(Baidu)

MXNet
(Amazon)
Developed by U Washington, CMU, MIT,
Hong Kong U, etc but main framework of
choice at AWS

And others...

The point of deep learning frameworks

Lecture 8 -2525

April 27, 2017Fei-Fei Li & Justin Johnson & Serena Yeung

(1) Easily build big computational graphs
(2) Easily compute gradients in computational graphs
(3) Run it all efficiently on GPU (wrap cuDNN, cuBLAS, etc)

Computational Graphs
x y z

*

a
+

b

Σ

c

Numpy

Problems:
- Can’t run on GPU
- Have to compute

our own gradients

Computational Graphs
x y z

*

a
+

b

Σ

c

PyTorch

Lecture 8 -3434

Computational Graphs
x y z

*

a
+

b

Σ

c

PyTorch

Define Variables to
start building a computational
graph

Lecture 8 -3535

Computational Graphs
x y z

*

a
+

b

Σ

c

PyTorch

Forward pass
looks just like numpy

Lecture 8 -3636

Computational Graphs
x y z

*

a
+

b

Σ

c

PyTorch

Calling c.backward()
computes all gradients

Lecture 8 -3737

Computational Graphs
x y z

*

a
+

b

Σ

c

PyTorch

Run on GPU by
casting to .cuda()

Lecture 8 -3838

PyTorchNumpy

PyTorch (more detail)

Lecture 8 -4040

PyTorch: Three Levels of Abstraction

Lecture 8 -8181

• Tensor: Imperative ndarray, but runs on GPU

• Variable: Node in a computational graph; stores data
and gradient

• Module: A neural network layer; may store state or
learnable weights

PyTorch: Tensors

Lecture 8 -8282

Fei-Fei Li & Justin Johnson & Serena Yeung

PyTorch Tensors are just like numpy
arrays, but they can run on GPU.

No built-in notion of computational
graph, or gradients, or deep learning.

Here we fit a two-layer net using
PyTorch Tensors:

PyTorch: Tensors
Create random tensors
for data and weights

Lecture 8 -8383

Fei-Fei Li & Justin Johnson & Serena Yeung

PyTorch: Tensors

Forward pass: compute
predictions and loss

Lecture 8 -8484

Fei-Fei Li & Justin Johnson & Serena Yeung

PyTorch: Tensors

Backward pass:
manually compute
gradients

Lecture 8 -8585

PyTorch: Tensors

Gradient descent
step on weights

Lecture 8 -8686

Fei-Fei Li & Justin Johnson & Serena Yeung

PyTorch: Tensors

To run on GPU, just cast
tensors to a cuda datatype!

Lecture 8 -8787

Fei-Fei Li & Justin Johnson & Serena Yeung

PyTorch: Autograd

Lecture 8 -8888

Fei-Fei Li & Justin Johnson & Serena Yeung

A PyTorch Variable is a node in a
computational graph

x.data is a Tensor

x.grad is a Variable of gradients
(same shape as x.data)

x.grad.data is a Tensor of gradients

PyTorch: Autograd

Lecture 8 -8989

Fei-Fei Li & Justin Johnson & Serena Yeung

PyTorch Tensors and Variables
have the same API!

Variables remember how they were
created (for backprop)

PyTorch: Autograd

We will not want gradients
(of loss) with respect to data

Do want gradients with
respect to weights

Lecture 8 -9090

Fei-Fei Li & Justin Johnson & Serena Yeung

PyTorch: Autograd

Forward pass looks exactly
the same as the Tensor version, but
everything is a variable now

Lecture 8 -9191

Fei-Fei Li & Justin Johnson & Serena Yeung

PyTorch: Autograd

Compute gradient of loss
with respect to w1 and w2 (zero out
grads first)

Lecture 8 -9292

PyTorch: Autograd

Make gradient
step on weights

Lecture 8 -9393

Fei-Fei Li & Justin Johnson & Serena Yeung

PyTorch: New Autograd Functions

Define your own autograd
functions by writing forward
and backward for Tensors

(similar to modular layers in A2)

Lecture 8 -9494

Fei-Fei Li & Justin Johnson & Serena Yeung

class ReLU(torch.autograd.Function):
 @staticmethod
 def forward(ctx, x):
 ctx.save_for_backward(x)
 return x.clamp(min=0)

 @staticmethod
 def backward(ctx, grad_y):
 x, = ctx.saved_tensors
 grad_input = grad_y.clone()
 grad_input[x < 0] = 0
 return grad_input

PyTorch: New Autograd Functions

Can use our new autograd
function in the forward pass

Lecture 8 -9595

class ReLU(torch.autograd.Function):
 @staticmethod
 def forward(ctx, x):
 ctx.save_for_backward(x)
 return x.clamp(min=0)

 @staticmethod
 def backward(ctx, grad_y):
 x, = ctx.saved_tensors
 grad_input = grad_y.clone()
 grad_input[x < 0] = 0
 return grad_input

PYTORCH NN MODULE

PyTorch: nn

Higher-level wrapper for
working with neural nets

Similar to Keras and friends …
but only one, and it’s good =)

Lecture 8 -9696

Fei-Fei Li & Justin Johnson & Serena Yeung

PyTorch: nn

Define our model as a
sequence of layers

nn also defines common loss
functions

Lecture 8 -9797

Fei-Fei Li & Justin Johnson & Serena Yeung

PyTorch: nn

Forward pass: feed data
to model, and prediction to loss
function

Lecture 8 -9898

PyTorch: nn

Backward pass:
compute all gradients

Lecture 8 -9999

Fei-Fei Li & Justin Johnson & Serena Yeung April 27, 201710

PyTorch: nn

Make gradient step on
each model parameter

Lecture 8 - 1000

Fei-Fei Li & Justin Johnson & Serena Yeung April 27, 201710

PyTorch: optim

Use an optimizer for
different update rules

Lecture 8 - 1011

PyTorch: optim

Update all parameters
after computing gradients

10Lecture 8 - 102

Fei-Fei Li & Justin Johnson & Serena Yeung

2

PyTorch: nn
Define new Modules

10Lecture 8 - 103

Fei-Fei Li & Justin Johnson & Serena Yeung

3

A PyTorch Module is a neural net
layer; it inputs and outputs Variables

Modules can contain weights (as
Variables) or other Modules

You can define your own Modules
using autograd!

PyTorch: nn
Define new Modules

Define our whole model
as a single Module

10Lecture 8 - 104

Fei-Fei Li & Justin Johnson & Serena Yeung

4

PyTorch: nn
Define new Modules

Initializer sets up two
children (Modules can
contain modules)

10Lecture 8 - 105

Fei-Fei Li & Justin Johnson & Serena Yeung

5

PyTorch: nn
Define new Modules

Define forward pass using
child modules and
autograd ops on Variables

No need to define
backward - autograd will
handle it

10Lecture 8 - 106

Fei-Fei Li & Justin Johnson & Serena Yeung

6

PyTorch: nn
Define new Modules

Construct and train an
instance of our model

10Lecture 8 - 107

Fei-Fei Li & Justin Johnson & Serena Yeung

7

PyTorch: DataLoaders

A DataLoader wraps a
Dataset and provides
minibatching, shuffling,
multithreading, for you

When you need to load
custom data, just write
your own Dataset class

10Lecture 8 - 1088

PyTorch: DataLoaders

Iterate over loader to form
minibatches

Loader gives Tensors so you
need to wrap in Variables

10Lecture 8 - 1099

PyTorch: Pretrained Models

Super easy to use pretrained models with
torchvision https://github.com/pytorch/vision

11Lecture 8 - 1100

https://github.com/pytorch/vision

Static vs Dynamic Graphs

Lecture 8 -4040

Fei-Fei Li & Justin Johnson & Serena Yeung April 27, 201712
0

Static vs Dynamic Graphs
TensorFlow: Build graph once, then
run many times (static)

PyTorch: Each forward pass defines
a new graph (dynamic)

Build
graph

Run each
iteration

New graph each iteration

Lecture 8 - 120

Static vs Dynamic: Optimization

With static graphs,
framework can
optimize the
graph for you
before it runs!

Conv
ReLU
Conv
ReLU
Conv
ReLU

The graph you wrote Equivalent graph with
fused operations

Conv+ReLU
Conv+ReLU
Conv+ReLU

April 27, 2017

Static vs Dynamic: Serialization

Static
Once graph is built,
can serialize it and
run it without the code
that built the graph!

Dynamic
Graph building and
execution are intertwined,
so always need to keep
code around

Fei-Fei Li & Justin Johnson & Serena Yeung April 27, 201712

Static vs Dynamic: Conditional

y =
w1 * x
w2 * x

3

if z > 0
otherwise

Lecture 8 - 123

Fei-Fei Li & Justin Johnson & Serena Yeung April 27, 201712

Static vs Dynamic: Conditional

y =
w1 * x
w2 * x

if z > 0
otherwise

PyTorch: Normal Python

4Lecture 8 - 124

Static vs Dynamic: Conditional

y =
w1 * x
w2 * x

if z > 0
otherwise

PyTorch: Normal Python

TensorFlow: Special TF
control flow operator!

12Lecture 8 - 125

April 27, 2017

5

Static vs Dynamic: Loops

yt = (yt-1+ xt) * w
y0

x1 x2 x3

+ * + * +

w

*

12Lecture 8 - 126

April 27, 2017Fei-Fei Li & Justin Johnson & Serena Yeung

6

Static vs Dynamic: Loops

y0

x1 x2 x3

+ * + * +

w

*
yt = (yt-1+ xt) * w

PyTorch: Normal Python

12Lecture 8 - 127

April 27, 2017

7

Static vs Dynamic: Loops
TensorFlow: Special TF control flow

yt = (yt-1+ xt) * w

PyTorch: Normal Python

12Lecture 8 - 1288

Tensorboard

Lecture 8 -4040

Visualizing
pytorch
 graphs

Visualizing pytorch graphs

ONNX EXPORT

ONNX

• Open neural network exchange
• Provides an open format for saving DL models in files
• Models can be saved from various tools

– Pytorch, Tensorflow, Scikit-learn

• Models saved in ONNX format can be executed in various
platforms:
– Caffe2 – Python
– https://onnxruntime.ai/

https://onnxruntime.ai/
https://onnxruntime.ai/

Exporting Pytorch module to ONNX

ONNX File format

ONNX File format

Running ONNX models

References

• Deep Learning with Pytorch. Eli Stevens, Luca Antiga, Thomas
Viehman, Manning publishers.

• Exporting a model from pytorch to ONNX and running using
ONNX runtime:
https://pytorch.org/tutorials/advanced/super_resolution_with_onnxruntime.html

• Tensorboard tutorial:
https://pytorch.org/tutorials/intermediate/tensorboard_tutorial.html

https://pytorch.org/tutorials/advanced/super_resolution_with_onnxruntime.html
https://pytorch.org/tutorials/intermediate/tensorboard_tutorial.html

