CONVERGENCE RATES
FOR OPTIMIZATION
ALGORITHMS

SOURANGSHU BHATTACHARYA
CSE, IIT KHARAGPUR

WEB: HTTPS://CSE.NITKGP.AC.IN/~SOURANGSHU/

EMAIL: SOURANGSHU@CSE.ITKGP.AC.IN

https://cse.iitkgp.ac.in/~sourangshu/
mailto:Sourangshu@cse.iitkgp.ac.in

CONVERGENCE RATES

{3} CONVERGENCE RATE AND
ASSUMPTIONS

A sequence {x*} is said to converge at the rate y*, if:

[— x| <Al - x| (= 1k - xT < yRx" - %),

Assumption (L/c)

The objective function F : R® — R is

> c-strongly convex (= unique minimizer) and

> L-smooth (i.e., VF' is Lipschitz continuous with constant L).

GRADIENT DESCENT CONVERGENCE

fF(wg) + VEwR)T (w —wg) + $Lllw — w3

F(wg) + VF(w) T (w — wg) + ellw — wy I3

(Choosing a = 1/L to minimize upper bound yields\ /
(F(wgy1) — Fx) < (F(wg) — Fx) — 52 [VF(wg)|I3
while lower bound yields
5 IIVF(wi)|13 > c(F(wg) — Fy),
which together imply that
wr | (Flwesn) — F) < (1 - £)(F(wg) - Fu). w

J

L-SMOOTH OBJECTIVE FUNCTION

[IVE(w) — VE(W)]|| < L||lw — w||

Proof of inequality:

F(w) = F(@) + /O oF(w +;Ew —) g

= F(w) + /O VF(w+ t(w — w))T (w — w) dt
= F(w) + VF (@) (w — w) + /O [VF(w+ t(w — w)) — VF(@)]" (w —) dt

< F(@) + VF(@)T (w — @) + /0 Ll[t(w — @)||2||w — @] dt,

C-STRONG CONVEXITY

Fw) 2 F(wi)) + VF(w)T (w = wi) + = 1w = wel |

Minimizing the RHS w.r.t. w:

w = Wi — %VF(WR)

Lower bound on RHS: F(wy) — 2—1C | |VF(Wk)||2

Putting back in the first equation:
2
c(F(wi) = F(w)) < 1/2 |IVE(wy)||

Convergence Rate and Computational Complexity

Overall Complexity (€) = Convergence Rate™(¢) * Complexity of each iteration

Strongly Convex + Smooth Convex + Smooth
Convergence Rate Complexity of = Overall Complexity Convergence = Complexity of Overall Complexity
each iteration Rate each iteration

*ofeld) 0 o) o))
<))l

SGD ANALYSIS

THEOREM 14.8 Let B,p > 0. Let f be a convez function and let w* € argming i< p flw).

Assume that SGD 1s run for T iterations with 1 =
all t, ||vy|| < p with probability 1. Then,

3. Assume also that for
pe

< Br
E[f(w)] - 7=
ﬁ
Therefore, for any € > 0, to achieve E[f(W)| —) <¢, it suffices to run the
SGD algorithm for a number of iterations that satuﬁea
3.3
psol
€2

SGD ANALYSIS

LEMMA 14.1 Letvy,...,vy be an arbitrary sequence of vectors. Any algorithm
with an initialization wV) = 0 and an update rule of the form

wltt) = wl) — gy, (14.4)

satisfies

IIW*II2

| VRN

—W Vt

T
Z [ve|?. (14.5)

M'ﬂ

t=1

In particular, for every B,p > 0, if for all t we have that ||v¢|| < p and if we set

B2

n=/ 27, then for every w* with [|[w*|| < B we have

T
12 w® —w* v) < 2L
t=1

§|

SGD ANALYSIS

Proof Using algebraic manipulations (completing the square), we obtain:

1

(W(t) — W, Vi) = ;(W(t) — W, Vi)
1
= o (W =W — v+ W — w1 v)
1
= o (1w =W I W — w?) + vl

_ "

SGD ANALYSIS

where the last equality follows from the definition of the update rule. Summing
the equality over t, we have

T r T
1 n
E (w) —w*, v,) = o E (—”W(H—l) - w*[|? + [[w® — W*||2) D) E Ivell®.
t=

t=1 t=1 1
(14.6)
The first sum on the right-hand side is a telescopic sum that collapses to

”w(l) - W*||2 . ”W(T+1) - W*||2-

_ "

SGD ANALYSIS

Plugging this in Equation (14.6), we have

T

. 1 . w2+ "
Z(\N“’ - W, vy) = 2—(IIW(” —w*[|2 = |wTTD — w||2) Z”Vt”2
t=1

1 *
< g lw® — w4 3 Zuvtnz

1 U
= %”W*”2 +5 Z Ivell?,
t=1

where the last equality is due to the definition w() = 0. This proves the first
part of the lemma (Equation (14.5)). The second part follows by upper bounding
|lw*|| by B, ||v¢|| by p, dividing by T, and plugging in the value of 7. O

SGD ANALYSIS

T
E [f(W) - f(w")] < E [%Z w(®) w*)>].

vi.T viT t—1

Since Lemma 14.1 holds for any sequence vy, vy, ...vp, it applies to SGD as well.
By taking expectation of the bound in the lemma we have

=4 (14.9)

It is left to show that

T
E [%Z (t) w*))] < IE [%ZW’(” —w*,vt)] ’ (14.10)

t=1

SGD ANALYSIS

Using the linearity of the expectation we have
1 « 1 «

E |= wlt) —w* v} | = = E [(w") —w*, v;)].
= ;1()| =72 EK)]

vi.T vi:.T
t=1

Next, we recall the law of total expectation: For every two random variables «, /3,
and a function g, E,[g(a)] = Ez E,[g(a)|3]. Setting @ = vy.; and B = vy, we
get that

E (W —w*, v;)] = E [(wl!) —w*, v;)]

vi:.T Vi:t

= E E[(w'9 —w*v;)|vie_1].
Vi:it—1 Vi:t

Once we know vy.;_1, the value of w'¥) is not random any more and therefore

E E [(w(” —w*,vy)|vig—1] = E (wt) — w*, E[ve | vie-1]) -

Viit—1 Vit Vit—1

SGD ANALYSIS

Since w?) only depends on v;.;_; and SGD requires that Ey,[v:] w] € af(wt)
we obtain that Ey, [v;|vyi4_1] € f(w®). Thus,

E (W(t)—W*"IE[VHVI:t—l]) > E [f(w®)— f(w*)].

Vi:t—1 Vi:t—1

Overall, we have shown that

E [(w" —w"v)]> E [f(w!")— f(w")]

Vi.p Viit—1

= E [f(wl)) - f(w")] .

vi:T

Summing over t, dividing by 7', and using the linearity of expectation, we get

that Equation (14.10) holds, which concludes our proof. O

LINEAR RATE METHODS

IMPROVING SGD

stochastic batch
gradient gradient
== s ’>
noise reduction ,/
stochastic batch
Newton Newton

Slides taken from Jorge Nocedal

STOCHASTIC AVERAGED
GRADIENT

e Can we have a rate of O(p?) with only 1 gradient evaluation per iteration?
e YES! The stochastic average gradient (SAG) algorithm:
o Randomly select i; from {1,2,..., N} and compute f;, (z").

e Memory: y! = Vfi(z') from the last # where i was selected.
[Le Roux et al., 2012]
e Stochastic variant of increment average gradient (IAG).
[Blatt et al., 2007]
e Assumes gradients of non-selected examples don't change.
o Assumption becomes accurate as ||z!*t! — zt|| — 0.

Slides taken from Mark Schmidt

SAG CONVERGENCE RATE

e If each f/ is L—continuous and f is strongly-convex,
with oy = 1/16L SAG has

E[f(s") - f(=")] < (1 = iy {mLL SLN}) ,

where
2

C = [£(2") - F@")] + Zle® = 22+ .

@ Linear convergence rate but only 1 gradient per iteration.
e For well-conditioned problems, constant reduction per pass:

1\ Y 1
] — — < ——] = 0.8825.
(SN) —exp(8)

o For ill-conditioned problems, almost same as deterministic method (but N times
faster).

SAG CONVERGENCE RATE

@ Assume that N = 700000, L = 0.25, u = 1/N:

2
e Gradient method has rate (é—;ﬁ) = (0.99998.

o Accelerated gradient method has rate (1 — \/%) = 0.99761.
o SAG (N iterations) has rate (1 — min { £+, & }) = 0.88250.

2
P . \/L—lgu) _
o fastest possible first-order method: (Vitvi) = 0.99048.

@ SAG beats two lower bounds:
e Stochastic gradient bound (of O(1/t)).
e Deterministic gradient bound (for typical L, p, and N).

® Number of f] evaluations to reach e:
e Stochastic: O(ﬁ(l/e))
o Gradient: O(N%log(l/e)).
o Accelerated: O(N\/%log(l/e)).
o SAG: O(max{N, %}log(l/e)).

_ "

SAG IMPLEMENTATION

@ Basic SAG algorithm:
o while(1)
e Sample i from {1,2,...,N}.
o Compute f/(z).
o d=d—y;+ fi(z).
o y; = fi(x).
* r=zx— &d.
@ Practical variants of the basic algorithm allow:

e Regularization.

e Sparse gradients.
o Automatic step-size selection.

@ Common to use adaptive step-size procedure to estimate L.
e Termination criterion.
o Canuse ||z'T! —2'||/a = 2d ~ |V f(z")| to decide when to stop.

Acceleration [Lin et al., 2015].
Adaptive non-uniform sampling [Schmidt et al., 2013].

SAG IMPLEMENTATION

@ Does re-shuffling and doing full passes work better?
e For classic SG: Maybe?

@ Noncommutative arithmetic-geometric mean inequality conjecture.
[Recht & Ré, 2012]

e For SAG: NO.
e Performance is intermediate between |IAG and SAG.

@ Can non-uniform sampling help?

e For classic SG methods, can only improve constants.
e For SAG, bias sampling towards Lipschitz constants L;,

IVfi(z) = Vi)l < Lillz —yll.

improves rate to depend on Lean instead of Lax.
(with bigger step size)

e Adaptively estimate L; as you go. (see paper/code).
e Slowly learns to ignore well-classified examples.

SAG with Non-Uniform Sampling

@ protein (n = 145751, p = 74) and sido (n = 12678, p = 4932)

Objective minus Optimum

10° T T T 107 T T

1 T
0 10 20 30 40 50 0 10 20 30 40 50
Effective Passes Effective Passes

@ Adaptive non-uniform sampling helps a lot.

STOCHASTICVARIANCE REDUCED
GD

SVRG algorithm:
@ Start with xg

@ fors=0,1,2...
& ;= % Zl\zl fi(zs)
o ZEO = Tg

e fort= 1,2, vcomn
e Randomly pick i; € {1,2,...,N}
o rf =z —ou(fl (z¥71) — fi, (zs) + ds).
® r,.1 =x' forrandom t € {1,2,...,m}.
Requires 2 gradients per iteration and occasional full passes,
but only requires storing ds and x.

Practical issues similar to SAG (acceleration versions, automatic step-size/termination,
handles sparsity/regularization, non-uniform sampling, mini-batches).

References:

* Convergence rate analysis of GD and SGD:
Understanding Machine Learning: Theory to Algorithms
Shai Shalev Shwartz and Shai Ben David.

THANKS

QUESTIONS?

Email: sourangshu@cse.iitkgp.ac.in

mailto:sourangshu@cse.iitkgp.ac.in

