

CONVERGENCE RATES FOR OPTIMIZATION ALGORITHMS

SOURANGSHU BHATTACHARYA

CSE, IIT KHARAGPUR

WEB: <u>HTTPS://CSE.IITKGP.AC.IN/~SOURANGSHU/</u>

EMAIL: SOURANGSHU@CSE.IITKGP.AC.IN

CONVERGENCE RATES

A sequence $\{x^k\}$ is said to converge at the rate γ^k , if:

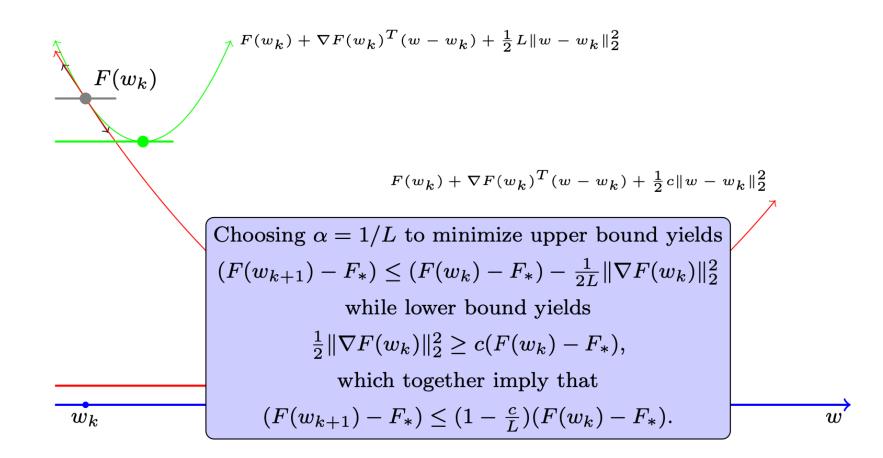
$$\|\mathbf{x}^{k+1} - \mathbf{x}^*\| \le \gamma \|\mathbf{x}^k - \mathbf{x}^*\| \quad (\Rightarrow \|\mathbf{x}^k - \mathbf{x}^*\| \le \gamma^k \|\mathbf{x}^0 - \mathbf{x}^*\|),$$

Assumption $\langle L/c \rangle$

The objective function $F: \mathbb{R}^d \to \mathbb{R}$ is

- ightharpoonup c-strongly convex (\Rightarrow unique minimizer) and
- ▶ L-smooth (i.e., ∇F is Lipschitz continuous with constant L).

GRADIENT DESCENT CONVERGENCE



L-SMOOTH OBJECTIVE FUNCTION

$$||\nabla F(w) - \nabla F(\overline{w})|| \le L||w - \overline{w}||$$

Proof of inequality:

$$F(w) = F(\overline{w}) + \int_0^1 \frac{\partial F(\overline{w} + t(w - \overline{w}))}{\partial t} dt$$

$$= F(\overline{w}) + \int_0^1 \nabla F(\overline{w} + t(w - \overline{w}))^T (w - \overline{w}) dt$$

$$= F(\overline{w}) + \nabla F(\overline{w})^T (w - \overline{w}) + \int_0^1 [\nabla F(\overline{w} + t(w - \overline{w})) - \nabla F(\overline{w})]^T (w - \overline{w}) dt$$

$$\leq F(\overline{w}) + \nabla F(\overline{w})^T (w - \overline{w}) + \int_0^1 L ||t(w - \overline{w})||_2 ||w - \overline{w}||_2 dt,$$

C-STRONG CONVEXITY

$$F(w) \ge F(w_k) + \nabla F(w_k)^T (w - w_k) + \frac{c}{2} ||w - w_k||^2$$

Minimizing the RHS w.r.t. w:

$$\widetilde{w} = w_k - \frac{1}{c} \nabla F(w_k)$$

Lower bound on RHS: $F(w_k) - \frac{1}{2c} ||\nabla F(w_k)||^2$

Putting back in the first equation:

$$c(F(w_k) - F(w)) \le 1/2 \left| |\nabla F(w_k)| \right|^2$$

Convergence Rate and Computational Complexity

Overall Complexity (ϵ) = Convergence Rate⁻¹(ϵ) * Complexity of each iteration

	Strongly Convex + Smooth			Convex + Smooth		
	Convergence Rate	Complexity of each iteration	Overall Complexity	Convergence Rate	Complexity of each iteration	Overall Complexity
GD	$O\left(\exp\left(-\frac{t}{Q}\right)\right)$	$O(n \cdot d)$	$O\left(nd \cdot Q \cdot \log\left(\frac{1}{\epsilon}\right)\right)$	$o\left(\frac{\beta}{t}\right)$	$O(n \cdot d)$	$O\left(nd \cdot \beta \cdot \left(\frac{1}{\epsilon}\right)\right)$
SGD	$O\left(\frac{1}{t}\right)$	<i>O</i> (<i>d</i>)	$O\left(\frac{d}{\epsilon}\right)$	$O\left(\frac{1}{\sqrt{t}}\right)$	0(d)	$O\left(\frac{d}{\epsilon^2}\right)$

THEOREM 14.8 Let $B, \rho > 0$. Let f be a convex function and let $\mathbf{w}^* \in \operatorname{argmin}_{\mathbf{w}: ||\mathbf{w}|| \le B} f(\mathbf{w})$.

Assume that SGD is run for T iterations with $\eta = \sqrt{\frac{B^2}{\rho^2 T}}$. Assume also that for all t, $\|\mathbf{v}_t\| \le \rho$ with probability 1. Then,

$$\mathbb{E}\left[f(\bar{\mathbf{w}})\right] - f(\mathbf{w}^{\star}) \le \frac{B \rho}{\sqrt{T}}.$$

Therefore, for any $\epsilon > 0$, to achieve $\mathbb{E}[f(\bar{\mathbf{w}})] - f(\mathbf{w}^*) \le \epsilon$, it suffices to run the SGD algorithm for a number of iterations that satisfies

$$T \ge \frac{B^2 \rho^2}{\epsilon^2}$$
.

LEMMA 14.1 Let $\mathbf{v}_1, \dots, \mathbf{v}_T$ be an arbitrary sequence of vectors. Any algorithm with an initialization $\mathbf{w}^{(1)} = 0$ and an update rule of the form

$$\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} - \eta \mathbf{v}_t \tag{14.4}$$

satisfies

$$\sum_{t=1}^{T} \langle \mathbf{w}^{(t)} - \mathbf{w}^{\star}, \mathbf{v}_{t} \rangle \le \frac{\|\mathbf{w}^{\star}\|^{2}}{2\eta} + \frac{\eta}{2} \sum_{t=1}^{T} \|\mathbf{v}_{t}\|^{2}.$$
 (14.5)

In particular, for every $B, \rho > 0$, if for all t we have that $\|\mathbf{v}_t\| \leq \rho$ and if we set $\eta = \sqrt{\frac{B^2}{\rho^2 T}}$, then for every \mathbf{w}^* with $\|\mathbf{w}^*\| \leq B$ we have

$$\frac{1}{T} \sum_{t=1}^{T} \langle \mathbf{w}^{(t)} - \mathbf{w}^{\star}, \mathbf{v}_{t} \rangle \leq \frac{B \rho}{\sqrt{T}}.$$

Proof Using algebraic manipulations (completing the square), we obtain:

$$\langle \mathbf{w}^{(t)} - \mathbf{w}^{\star}, \mathbf{v}_{t} \rangle = \frac{1}{\eta} \langle \mathbf{w}^{(t)} - \mathbf{w}^{\star}, \eta \mathbf{v}_{t} \rangle$$

$$= \frac{1}{2\eta} (-\|\mathbf{w}^{(t)} - \mathbf{w}^{\star} - \eta \mathbf{v}_{t}\|^{2} + \|\mathbf{w}^{(t)} - \mathbf{w}^{\star}\|^{2} + \eta^{2} \|\mathbf{v}_{t}\|^{2})$$

$$= \frac{1}{2\eta} (-\|\mathbf{w}^{(t+1)} - \mathbf{w}^{\star}\|^{2} + \|\mathbf{w}^{(t)} - \mathbf{w}^{\star}\|^{2}) + \frac{\eta}{2} \|\mathbf{v}_{t}\|^{2},$$

where the last equality follows from the definition of the update rule. Summing the equality over t, we have

$$\sum_{t=1}^{T} \langle \mathbf{w}^{(t)} - \mathbf{w}^{\star}, \mathbf{v}_{t} \rangle = \frac{1}{2\eta} \sum_{t=1}^{T} \left(-\|\mathbf{w}^{(t+1)} - \mathbf{w}^{\star}\|^{2} + \|\mathbf{w}^{(t)} - \mathbf{w}^{\star}\|^{2} \right) + \frac{\eta}{2} \sum_{t=1}^{T} \|\mathbf{v}_{t}\|^{2}.$$
(14.6)

The first sum on the right-hand side is a telescopic sum that collapses to

$$\|\mathbf{w}^{(1)} - \mathbf{w}^{\star}\|^2 - \|\mathbf{w}^{(T+1)} - \mathbf{w}^{\star}\|^2.$$

Plugging this in Equation (14.6), we have

$$\sum_{t=1}^{T} \langle \mathbf{w}^{(t)} - \mathbf{w}^{*}, \mathbf{v}_{t} \rangle = \frac{1}{2\eta} (\|\mathbf{w}^{(1)} - \mathbf{w}^{*}\|^{2} - \|\mathbf{w}^{(T+1)} - \mathbf{w}^{*}\|^{2}) + \frac{\eta}{2} \sum_{t=1}^{T} \|\mathbf{v}_{t}\|^{2}
\leq \frac{1}{2\eta} \|\mathbf{w}^{(1)} - \mathbf{w}^{*}\|^{2} + \frac{\eta}{2} \sum_{t=1}^{T} \|\mathbf{v}_{t}\|^{2}
= \frac{1}{2\eta} \|\mathbf{w}^{*}\|^{2} + \frac{\eta}{2} \sum_{t=1}^{T} \|\mathbf{v}_{t}\|^{2},$$

where the last equality is due to the definition $\mathbf{w}^{(1)} = 0$. This proves the first part of the lemma (Equation (14.5)). The second part follows by upper bounding $\|\mathbf{w}^{\star}\|$ by B, $\|\mathbf{v}_t\|$ by ρ , dividing by T, and plugging in the value of η .

$$\mathbb{E}_{\mathbf{v}_{1:T}}[f(\bar{\mathbf{w}}) - f(\mathbf{w}^{\star})] \leq \mathbb{E}_{\mathbf{v}_{1:T}} \left[\frac{1}{T} \sum_{t=1}^{T} (f(\mathbf{w}^{(t)}) - f(\mathbf{w}^{\star})) \right].$$

Since Lemma 14.1 holds for any sequence $\mathbf{v}_1, \mathbf{v}_2, ... \mathbf{v}_T$, it applies to SGD as well. By taking expectation of the bound in the lemma we have

$$\mathbb{E}_{\mathbf{v}_{1:T}} \left[\frac{1}{T} \sum_{t=1}^{T} \langle \mathbf{w}^{(t)} - \mathbf{w}^{\star}, \mathbf{v}_{t} \rangle \right] \leq \frac{B \rho}{\sqrt{T}}.$$
 (14.9)

It is left to show that

$$\mathbb{E}_{\mathbf{v}_{1:T}} \left[\frac{1}{T} \sum_{t=1}^{T} (f(\mathbf{w}^{(t)}) - f(\mathbf{w}^{\star})) \right] \leq \mathbb{E}_{\mathbf{v}_{1:T}} \left[\frac{1}{T} \sum_{t=1}^{T} \langle \mathbf{w}^{(t)} - \mathbf{w}^{\star}, \mathbf{v}_{t} \rangle \right], \quad (14.10)$$

Using the linearity of the expectation we have

$$\mathbb{E}_{\mathbf{v}_{1:T}}\left[\frac{1}{T}\sum_{t=1}^{T}\langle\mathbf{w}^{(t)}-\mathbf{w}^{\star},\mathbf{v}_{t}\rangle\right] = \frac{1}{T}\sum_{t=1}^{T}\mathbb{E}_{\mathbf{v}_{1:T}}[\langle\mathbf{w}^{(t)}-\mathbf{w}^{\star},\mathbf{v}_{t}\rangle].$$

Next, we recall the *law of total expectation*: For every two random variables α, β , and a function g, $\mathbb{E}_{\alpha}[g(\alpha)] = \mathbb{E}_{\beta} \mathbb{E}_{\alpha}[g(\alpha)|\beta]$. Setting $\alpha = \mathbf{v}_{1:t}$ and $\beta = \mathbf{v}_{1:t-1}$ we get that

$$\mathbb{E}_{\mathbf{v}_{1:T}}[\langle \mathbf{w}^{(t)} - \mathbf{w}^{\star}, \mathbf{v}_{t} \rangle] = \mathbb{E}_{\mathbf{v}_{1:t}}[\langle \mathbf{w}^{(t)} - \mathbf{w}^{\star}, \mathbf{v}_{t} \rangle]$$

$$= \mathbb{E}_{\mathbf{v}_{1:t-1}} \mathbb{E}_{\mathbf{v}_{1:t}}[\langle \mathbf{w}^{(t)} - \mathbf{w}^{\star}, \mathbf{v}_{t} \rangle \mid \mathbf{v}_{1:t-1}] .$$

Once we know $\mathbf{v}_{1:t-1}$, the value of $\mathbf{w}^{(t)}$ is not random any more and therefore

$$\underset{\mathbf{v}_{1:t-1}}{\mathbb{E}} \underset{\mathbf{v}_{1:t-1}}{\mathbb{E}} \left[\left\langle \mathbf{w}^{(t)} - \mathbf{w}^{\star}, \mathbf{v}_{t} \right\rangle \, | \, \mathbf{v}_{1:t-1} \right] = \underset{\mathbf{v}_{1:t-1}}{\mathbb{E}} \left\langle \mathbf{w}^{(t)} - \mathbf{w}^{\star}, \underset{\mathbf{v}_{t}}{\mathbb{E}} [\mathbf{v}_{t} \, | \, \mathbf{v}_{1:t-1}] \right\rangle \, .$$

Since $\mathbf{w}^{(t)}$ only depends on $\mathbf{v}_{1:t-1}$ and SGD requires that $\mathbb{E}_{\mathbf{v}_t}[\mathbf{v}_t \,|\, \mathbf{w}^{(t)}] \in \partial f(\mathbf{w}^{(t)})$ we obtain that $\mathbb{E}_{\mathbf{v}_t}[\mathbf{v}_t \,|\, \mathbf{v}_{1:t-1}] \in \partial f(\mathbf{w}^{(t)})$. Thus,

$$\underset{\mathbf{v}_{1:t-1}}{\mathbb{E}} \langle \mathbf{w}^{(t)} - \mathbf{w}^{\star}, \underset{\mathbf{v}_{t}}{\mathbb{E}} [\mathbf{v}_{t} \mid \mathbf{v}_{1:t-1}] \rangle \geq \underset{\mathbf{v}_{1:t-1}}{\mathbb{E}} [f(\mathbf{w}^{(t)}) - f(\mathbf{w}^{\star})].$$

Overall, we have shown that

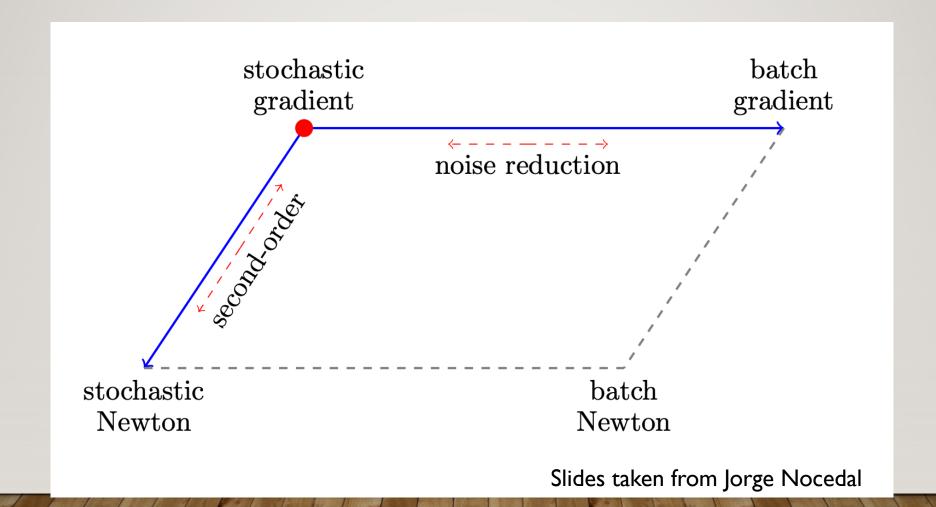
$$\mathbb{E}_{\mathbf{v}_{1:T}}[\langle \mathbf{w}^{(t)} - \mathbf{w}^{\star}, \mathbf{v}_{t} \rangle] \ge \mathbb{E}_{\mathbf{v}_{1:t-1}}[f(\mathbf{w}^{(t)}) - f(\mathbf{w}^{\star})]$$

$$= \mathbb{E}_{\mathbf{v}_{1:T}}[f(\mathbf{w}^{(t)}) - f(\mathbf{w}^{\star})].$$

Summing over t, dividing by T, and using the linearity of expectation, we get that Equation (14.10) holds, which concludes our proof.

LINEAR RATE METHODS

IMPROVING SGD



STOCHASTIC AVERAGED GRADIENT

- Can we have a rate of $O(\rho^t)$ with only 1 gradient evaluation per iteration?
 - YES! The stochastic average gradient (SAG) algorithm:
 - Randomly select i_t from $\{1, 2, ..., N\}$ and compute $f'_{i_t}(x^t)$.

$$x^{t+1} = x^t - \frac{\alpha^t}{N} \sum_{i=1}^N y_i^t$$

- **Memory**: $y_i^t = \nabla f_i(x^t)$ from the last t where i was selected. [Le Roux et al., 2012]
- Stochastic variant of increment average gradient (IAG).
 [Blatt et al., 2007]
- Assumes gradients of non-selected examples don't change.
- Assumption becomes accurate as $||x^{t+1} x^t|| \to 0$.

SAG CONVERGENCE RATE

• If each f_i' is L-continuous and f is strongly-convex, with $\alpha_t=1/16L$ SAG has

$$\mathbb{E}[f(x^t) - f(x^*)] \leqslant \left(1 - \min\left\{\frac{\mu}{16L}, \frac{1}{8N}\right\}\right)^t C,$$

where

$$C = [f(x^0) - f(x^*)] + \frac{4L}{N} ||x^0 - x^*||^2 + \frac{\sigma^2}{16L}.$$

- Linear convergence rate but only 1 gradient per iteration.
 - For well-conditioned problems, constant reduction per pass:

$$\left(1 - \frac{1}{8N}\right)^N \le \exp\left(-\frac{1}{8}\right) = 0.8825.$$

ullet For ill-conditioned problems, almost same as deterministic method (but N times faster).

SAG CONVERGENCE RATE

- Assume that N = 700000, L = 0.25, $\mu = 1/N$:
 - Gradient method has rate $\left(\frac{L-\mu}{L+\mu}\right)^2 = 0.99998$.
 - Accelerated gradient method has rate $\left(1-\sqrt{\frac{\mu}{L}}\right)=0.99761.$
 - SAG (N iterations) has rate $\left(1 \min\left\{\frac{\mu}{16L}, \frac{1}{8N}\right\}\right)^N = 0.88250$.
 - Fastest possible first-order method: $\left(\frac{\sqrt{L}-\sqrt{\mu}}{\sqrt{L}+\sqrt{\mu}}\right)^2=0.99048.$
- SAG beats two lower bounds:
 - Stochastic gradient bound (of O(1/t)).
 - Deterministic gradient bound (for typical L, μ , and N).
- Number of f'_i evaluations to reach ϵ :
 - Stochastic: $O(\frac{L}{\mu}(1/\epsilon))$.
 - Gradient: $O(N^{\frac{L}{\mu}}\log(1/\epsilon))$.
 - Accelerated: $O(N\sqrt{\frac{L}{\mu}}\log(1/\epsilon))$.
 - SAG: $O(\max\{N, \frac{L}{\mu}\} \log(1/\epsilon))$.

SAG IMPLEMENTATION

- Basic SAG algorithm:
 - while(1)
 - Sample i from $\{1, 2, ..., N\}$.
 - Compute $f'_i(x)$.
 - $d = d y_i + f_i'(x)$.
 - $y_i = f_i'(x)$.
 - $x = x \frac{\alpha}{N}d$.
- Practical variants of the basic algorithm allow:
 - Regularization.
 - Sparse gradients.
 - Automatic step-size selection.
 - Common to use adaptive step-size procedure to estimate L.
 - Termination criterion.
 - Can use $||x^{t+1} x^t||/\alpha = \frac{1}{n}d \approx ||\nabla f(x^t)||$ to decide when to stop.
 - Acceleration [Lin et al., 2015].
 - Adaptive non-uniform sampling [Schmidt et al., 2013].

SAG IMPLEMENTATION

- Does re-shuffling and doing full passes work better?
 - For classic SG: Maybe?
 - Noncommutative arithmetic-geometric mean inequality conjecture.

[Recht & Ré, 2012]

- For SAG: NO.
- Performance is intermediate between IAG and SAG.
- Can non-uniform sampling help?
 - For classic SG methods, can only improve constants.
 - For SAG, bias sampling towards Lipschitz constants L_i ,

$$\|\nabla f_i(x) - \nabla f_i(y)\| \le L_i \|x - y\|.$$

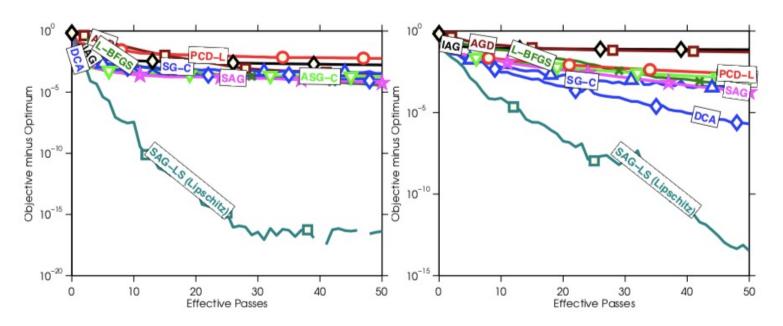
improves rate to depend on $L_{\sf mean}$ instead of $L_{\sf max}$.

(with bigger step size)

- Adaptively estimate L_i as you go. (see paper/code).
- Slowly learns to ignore well-classified examples.

SAG with Non-Uniform Sampling

• protein (n = 145751, p = 74) and sido (n = 12678, p = 4932)



Adaptive non-uniform sampling helps a lot.

STOCHASTIC VARIANCE REDUCED GD

SVRG algorithm:

- Start with x_0
- for $s = 0, 1, 2 \dots$
 - $d_s = \frac{1}{N} \sum_{i=1}^{N} f'_i(x_s)$
 - $x^0 = x_s$
 - for t = 1, 2, ... m
 - Randomly pick $i_t \in \{1, 2, \dots, N\}$
 - $x^t = x^{t-1} \alpha_t (f'_{i_t}(x^{t-1}) f'_{i_t}(x_s) + d_s).$
 - $x_{s+1} = x^t$ for random $t \in \{1, 2, ..., m\}$.

Requires 2 gradients per iteration and occasional full passes, but only requires storing d_s and x_s .

Practical issues similar to SAG (acceleration versions, automatic step-size/termination, handles sparsity/regularization, non-uniform sampling, mini-batches).

References:

Convergence rate analysis of GD and SGD:
 Understanding Machine Learning: Theory to Algorithms
 Shai Shalev Shwartz and Shai Ben David.

THANKS

QUESTIONS?

Email: sourangshu@cse.iitkgp.ac.in