STOCHASTIC
OPTIMIZATION FOR
LARGE SCALE ML

SOURANGSHU BHATTACHARYA
CSE, IIT KHARAGPUR
WEB: HTTPS://CSE.ITKGPAC.IN/~SOURANGSHU/

EMAIL: SOURANGSHU@CSE.ITKGPAC.IN

https://cse.iitkgp.ac.in/~sourangshu/
mailto:Sourangshu@cse.iitkgp.ac.in

MUCH OF ML IS OPTIMIZATION

Linear Classification Maximum Likelihood
argminZHwHQ—l—C’Zﬁi i
T i=1 arg max Z log pg(x;)
s.t. 1 — yix?w <¢; i=1
& >0
k
: in J(u) = =gl

K-Means arg Ml,pg’l‘m. ” (1) Z Z ||z — w1

j:]- ’iECj

& STOCHASTIC OPTIMIZATION

* Goal of machine learning :

* Minimize expected loss

m;jn L(h) = E [loss(h(x),y)]

given samples (z;,y;) i = 1,2...m

* This is Stochastic Optimization

* Assume loss function is convex

BATCH (SUB)GRADIENT DESCENT FOR ML

* Process all examples together in each step

wk+D B _ (1 Z 8L(w,xi,yi)>

n 4 ow
=1

where L is the regularized loss function

* Entire training set examined at each step

* Very slow when n is very large

TECH,
of No,
<, CAENCG,

i)
]

STOCHASTIC (SUB)GRADIENT DESCENT

* “Optimize” one example at a time

* Choose examples randomly (or reorder and
choose in order)

* Learning representative of example distribution

for 2 =1 to n:
aL(wamzayZ)

wkTD (k) _ m;
ow

where L is the regularized loss function

TECH,
of No,
<& ZTIEENCG

STOCHASTIC (SUB)GRADIENT DESCENT

for : =1 to n:

(9L(w, Li, yz)

WD) o)y, S0

where L is the regularized loss function

* Equivalent to online learning (the weight vector w changes
with every example)

* Convergence guaranteed for convex functions (to local

minimum)

SGD CONVERGENCE

“ I Objective function oscillates
over the iterations.

Not a “Descent Method”

Maintain the running

8k
NM U\ minimum loss and
al | corresponding model

parameters.

(O)
=
()
>
c
0
)
(O}
c
=)
(O]
=
)
()
2
o

1 1 1 1 1 1
0 500 1000 1500 2000 2500 3000 3500

Iterations / updates

L QD+
7 2
0 3
= 2
[=}

/L:\‘i/
wfm.m

TECH
of No,
<& TG,
IN
%
z

, \\ CONVERGENCE OF SGD

Given dataset D = {(x{, V1), -, (X1, Yim) }

Loss function: L(8,D) = %Zlivﬂ L(6; x;, Vi)

For linear models: [(0; x;, y;) = L(y;, 3T¢(xi))

Assumption D is drawn IID from some distribution P.

Problem:

mein L(6,D)

£ CONVERGENCE OF SGD

* Input: D

 Output: §

Algorithm:
¢ Initialize 6°
* Fort=1,..,T
0t = 0° — 1 Vol(ys, 6" d(x))

. 9_ _ Z{=1 TItet
— —ZT =
t=1 T’t

E/A@l& CONVERGENCE OF SGD

?fmmzmw

« Expected loss: s(0) = Ep[l(y, 0T p(x)]
* Optimal Expected loss: s* = s(6%) = mgn s(6)
* Convergence:

R* + L? Y {_qn;f

Egls(0)] —s* < 25T,

* Where: R = ||60° — 6*||
« L =maxVI(y,0Tp(x))

Define 1 = [|6¢ — 6*|| and g; = Vpl(y:, 0T d(x¢))
ré = 18 + néllgell* — 2n. (6t — 697 g,

Taking expectation w.r.t P, 8 and using s* — s(6?)
> Ep[ge]" (8" — 6%), we get:
Eglré — 7] S nfL? + 2n.(s™ — Egls(69)])

Taking sum over t = 1, ..., T and using

T-1 T-1
Eglr? — 81 <12) n2 +2) 1(s” - Egls(@9)])
t=0 t=0

TECH,
of No,
<, CAENCG,

SGD CONVERGENCE PROOF

* Using convexity of s:

<2 77t> Eg [s(6)] < Ep [Z n:s(09)]
t=0

t=0

 Substituting in the expression from previous slide:
T-1

T-1
Bglr? —m81 <12) 02 +2) n:(s" — Egls(@)])
t=0 t=0

* Rearranging the terms proves the result.

SGD - ISSUES

» Convergence very sensitive to learning rate

(7M¢)

(oscillations near solution due to probabilistic

nature of sampling)

* Might need to decrease with time to

ensure the algorithm converges eventually

* Basically — SGD good for machine learning
with large data sets!

Gradient Descent

MINI-BATCH SGD

* Stochastic — | example per iteration
* Batch — All the examples!
* Mini-batch SGD:

* Sample m examples at each step and perform SGD
on them

* Allows for parallelization, but choice of m

based on heuristics

EXAMPLE: TEXT CATEGORIZATION

 Example by Leon Bottou:

* Reuters RCVI document corpus
* Predict a category of a document
¢ One vs. the rest classification

* n=1781,000 training examples (documents)

* 23,000 test examples
« d=50,000 features

¢ One feature per word

* Remove stop-words

* Remove low frequency words

EXAMPLE: TEXT CATEGORIZATION

* Questions:
* (1) Is SGD successful at minimizing f(w,b)?
* (2) How quickly does SGD find the min of f(w,b)?

* (3) What is the error on a test set?

Training time Value of f(w,b) Test error
Standard SVM 23,642 secs 0.2275 6.02%
“Fast SVM” 66 secs 0.2278 6.03%
SGD SVM 1.4 secs 0.2275 6.02%

(1) SGD-SVM is successful at minimizing the value of f(w,b)
(2) SGD-SVM is super fast

(3) SGD-SVM test set error is comparable

OPTIMIZATION “ACCURACY”

| Training time (secs)

| SGD SVM
100 {

| SGD
50 { _ Conventional

- SVM
/” LibLinear
’_)_____,_—-(

0.1 0.01 0.001 0.0001 1e-05 1e-06 1e-07 1e-08 1e-09

Optimization accuracy (trainingCost-optimalTrainingCost)

Optimization quality: | f(w,b) — f(w°rt,bor!) |

For optimizing f(w,b) within reasonable quality SGD-SVM is super fast

LEARNING RATE / STEP-SIZE SCHEDULE

* Need to choose learning rate n and t;

Wiyl & Wt

)

Mo [(OLCxyyi) Mo

* Leon suggests:

* Choose t; so that the expected initial updates are comparable with the expected size of the weights
* Choose 7y:

¢ Select a small subsample

e Try various rates n, (e.g, 10,1,0.1,0.01,...)

* Pick the one that most reduces the cost

* Use n for next 100k iterations on the full dataset

* Alternative form:
= No
1+ (decay * t)

n

* Step decay schedule:
* Drop the learning rate by half every 10 epochs.

or(——)

fl
« n=ng*(drop) Tarop

LEARNING RATE COMPARISON

accuracy om validation set

0.70

0.65

0.60

055

0.50

Comparing Model Accuracy

AL~
(NMZATAN o
L
' l‘./\.
,
|
' {
|
~— Constant Ir
v Time-based
~— Step decay
ww Exponential decay
20 & &0 &0 100

epochs

ACCELERATED GRADIENT
DESCENT

STOCHASTIC GRADIENT DESCENT

|dea: Perform a parameter update for each
training example x(i) and label y(i)

Update: #= &-7- Ved (&: x(i), y(i))

Performs redundant computations for large
datasets

MOMENTUM GRADIENT DESCENT

- ldea: Overcome ravine oscillations by momentum

SGD
Update:
c Vi= pyVer1t - Vo d(6) @ D>>

« 4= OG-t

e @ @

WHY MOMENTUM REALLY WORKS

The momentum term reduces updates for
dimensions whose gradients change directions.

@ Starting Point

-

| |
oS e 1 \Yﬁhﬂ
O ”,"' | \‘\\ '/ \‘-V‘ O
/ !) R /J’

term increases for dimensions whose

The moment

gradients point in the same directions.
Demo : http://distill.pub/2017/momentum/

http://distill.pub/2017/momentum/

NESTEROV ACCELERATED GRADIENT

* However, a ball that rolls down a hill, blindly
following the slope, is highly unsatisfactory.

* We would like to have a smarter ball that has a
notion of where it is going so that it knows to slow
down before the hill slopes up again.

* Nesterov accelerated gradient gives us a way of it.

NESTEROV ACCELERATED GRADIENT

vt =Y Vi1 +NVeJ (0 — yvi—1)
0 =0 — (o

Approximation of the next position of
the parameters(predict)

NESTEROV ACCELERATED GRADIENT

Approximation of the next position of
the parameters’ gradient(correction)

vt =Y Vi1 +NVeJ (0 — yvi—1)
0 =0 — (o

Approximation of the next position of
the parameters(predict)

NESTEROV ACCELERATED GRADIENT

Approximation ofthe next position of

Blue Iine : pFEdiCt the parameters’ gradient(correction)
Red line : correction vt =Y V-1 + Ve (0 — yvi—1)
0 =0 — UVt

Approximationof the next position of

Green line :accumulated gradient the parameters{predict]

NESTEROV ACCELERATED GRADIENT

Approximation ofthe next position of

Blue Iine | pFEdiCt the parameters’ gradient(correction)
Red line : correction vt =y V-1 +NVeJ (6 — yvi—1)
0 =60 — V¢

Approximationof the next position of

Green line :accumulated gradient the parameters{predict

NESTEROV ACCELERATED GRADIENT

Approximation ofthe next position of

Blue Iine | pFEdiCt the parameters’ gradient(correction)
Red line : correction vt =Y vt—1 + NVeJ (0 — Yvi-1)
0 =60 — Vt

Approximationof the next position of
the parameters(predict)

Green line :accumulated gradient

NESTEROV ACCELERATED GRADIENT

Approximation ofthe next position of

Blue Iine : prEdiCt the parameters’ gradient(correction)
Red line : correction vt =Y vi—1 +NVeJ (0 — Yv—1)
0 =60 — V¢

Approximationof the next position of

Green line :accumulated gradient O A

NESTEROV ACCELERATED GRADIENT

Approximation ofthe next position of

Blue Iine | prEdiCt the parameters’ gradient(correction)
Red line : correction vt =Y vg—1 +NVeJ (0 — Yvi—1)
0 =60 — Vt

Approximationof the next position of

Green line :accumulated gradient O R

NESTEROV ACCELERATED GRADIENT

Approximation ofthe next position of

Blue Iine | prEdiCt the parameters’ gradient(correction)
Red line : correction vt =Y vg—1 +NVeJ (0 — Yvi—1)
0 =60 — Vt

Approximationof the next position of

Green line :accumulated gradient O R

NESTEROV ACCELERATED GRADIENT

* This anticipatory update prevents us from going
too fast and results in increased responsiveness.

* Now , we can adapt our updates to the slope of our
error function and speed up SGD in turn.

ADAPTIVE GRADIENTS

* Previous methods :
e we used the same learning rate for all parameters @

* Adagrad :

* |t uses a different learning rate for every parameter 6; at
every time step ¢t

WHAT'S NEXT ?

* We also want to adapt our updates to each
individual parameter to perform larger or smaller
updates depending on their importance.

e Adagrad
* Adadelta

* RMSprop
 Adam

ADAGRAD

* Adagrad adapts the learning rate to the parameters
* Performing larger updates for infrequent
* Performing smaller updates for frequent parameters.

* Ex.

* Training large-scale neural nets at Google that learned to
recognize cats in Youtube videos.

ADAGRAD

9t+1,z‘ — 9t,i — 1 gt

b

J

Adagrad modifies the general learning

rate n based on the past gradients
that have been computed for 0;

Adagrad
Ui

/G ii + € |

Or+1.5 = O

gt.i

gt,

Vectorize

041 =0 —

i = VoJ(0;)

n

et

ADAGRAD

RdXxd N

Otv1i=0t;—m" gt G: =

-0 I

G: is a diagonal matrix where each diagonal
element (i,i) is the sum of the squares of the
gradients G;up to time step t.

t
Gt = z gi;
Adagrad " —
9t+1,z‘ — 9t,z‘ " gt.i |
\/Gt,ii + € Vectorize
Or41 = 0; — T_ 0o gt-

\/Gt—l—e

ADAGRAD

9t+1,z‘ — 9t,z‘ — 1 gt

R - @ e

R
I

-0 I

€ is a smoothing term that avoids division by
zero (usually on the order of 1e - 8).

Adagrad

17 .
/G ii + €

Or+1.5 = O

gt.i

gti = Vo (6;)

Vectorize

Ot41 = 0; —

ADAGRAD’S ADVANTAGE

* Advantages :
* It is well-suited for dealing with sparse data.
* It greatly improved the robustness of SGD.
* |t eliminates the need to manually tune the learning rate.

ADAGRAD’S DISADVANTAGE

e Disadvantage :

* Main weakness is its accumulation of the squared
gradients in the denominator.

ADAGRAD’'S DISADVANTAGE

* The disadvantage causes the learning rate to shrink
and become infinitesimally small. The algorithm
can no longer acquire additional knowledge.

* The following algorithms aim to resolve this flaw.
* Adadelta
* RMSprop
* Adam

ADADELTA

* The expected square sum of gradients is recursively
defined as a decaying average of all past squared
gradients.

Elg*]; =vE[9%)1—1 + (1 —7)g;

« E[g?]: :Therunning average at time step t.

e ¥ : Afraction similarly to the Momentum term, around
0.9

of 0,
O
&S&,’ LN O
S A~
- ad» B
h
Z =
S S

Adagrad

Ab=——1 — ©g

Adadelta

A8, — LA

- VE[g¥: +e

Al =—n- gt
041 = 6, + Ab,

SGD
= © gt Abe = =1 gu.
VG + e 0141 = 0, + Ab,

Replace the diagonal matrix G; with the decaying
average over past squared gradients E[g2];

Adadelta

n
AfG; = —
t v E[9%): T

SGD
=—— © gt Abe = =1 gu.
VG +e 0141 = 0, + Ab,

Replace the diagonal matrix G; with the decaying
average over past squared gradients E[g2];

Adadelta Adadelta

Abf; = — A, = —

ADADELTA

* The units in this update do not match and the
update should have the same hypothetical units as
the parameter.

* As well as in SGD, Momentum, or Adagrad

* Torealize this, first defining another exponentially
decaying average

E[A6%], = yE[A§%],—1 + (1 —7) A6}

ADADELTA
< E[¢%; = vE[¢*]t-1 + (1 — 7)g;
E[A0?], = yE[AO?];—1 + (1 —7) A6}

RMS[A8], = \/E[AB2], + €

Adadelta Adadelta

/Aé\\ ADADELTA UPDATE RULE

mﬂmw

* Replacing the learning rate n in the previous update
rule with RMS[AG];—-1 finally yields the Adadelta
update rule:

RMS|[AB];—1 ¢
RM S|g]; t
Orr1 =0, + AB,

A9t=—

* Note : we do not even need to set a default
learning rate

TECH
of No,
< TEAREINGS,

RMSPROP

RMSprop and Adadelta have both been developed
independently around the same time to resolve
Adagrad’s radically diminishing learning rates.

RMSprop

E[g°]; = 0.9E[g?];_1 + 0.1¢g7
n
VE[g?: + €

Orr1 =0, — 9t

of TECHN,
\&\;\?’ Sl 0‘_
> A%
- (/6 2E
H: \@ “H
AL §
B RMSPROP

RMSprop as well divides the learning rate by an
exponentially decaying average of squared gradients.

RMSprop
E[g°]; = 0.9E[g?];_1 + 0.1¢g7
n
6 = 0, —
b t \/E[QQ]t + egt

Hinton suggests y to be set to 0.9, while a good
default value for the learning rate n is 0.001.

TECH,
of No,
<& ZTIEENCG

$E5 2o\
K ”‘§a‘ ;%
E v, %
W AR

N
%
z

e Adam’s feature :

 Storing an exponentially decaying average of past
squared gradients v¢ like Adadelta and RMSprop

» Keeping an exponentially decaying average of past
gradients m¢, similar tomomentum.

my = Bimy—1 + (1 — B1)g: The first moment (the mean)

The second moment (the

vy = PBovi—1 + (1 — B2)gs .
uncentered variance)

TECH
of No,
< TEAREINGS,

$E5 2o\
K ”‘&a‘ ;%
E v, %
W AR

* As m; and v are initialized as vectors of 0’s, they
are biased towards zero.
* Especially during the initial time steps
e Especially when the decay rates are small
e (i.e. 1 and B2 areclose to 1).

A
2
Z

* Counteracting these biases in Adam

Adam
A Ty
t - t 77 A
1 /81 0t+1 = 9t — = my
5 — Ut VU + €
it a—
1— ,Bé Note : default values of 0.9 for 54,
0.999 for 35, and 10-8for¢

¢ TECH,
,\\‘S\? j’ Sl 0,;
2l A\
A\ 79%%
W A\
L VISUALIZATION

Ny — SGD -
| — Momentum E
~— NAG
— Adagrad |
- Adadelta
= Rmsprop |

i

VISUALIZATION

— SGD

- Momentum
= NAG

- Adagrad
Adadelta
Rmsprop

1.0

3
sf:‘H\v M, —
M;.wv m
\ =P >m
QX cifsgsos
AR Bda808FE
R CEELSSS9=Q
AAVH' SERSLIx
O (114111}
™ -8
(7]
[| o
(2 2 3
|
<L | ¢
P d w
2 5
= | ¢ :
O | :
m
Q.
@ m g
(7¢]
=
LLl
LLl B
— 0 g
E o o

125 uoiyepl|eA wo Adeindde

SUMMARY

* There are two main ideas at play:

¢ Momentum : Provide consistency in update directions by

incorporating past update directions.

* Adaptive gradient : Scale the scale updates to individual variables

using the second moment in that direction.

* This also relates to adaptively altering step length for each

direction.

References:

SGD convergence proof:“Confidence level solutions for stochastic programming” by
Y. Nesterov, P.Vial, Automatica, 2008.

Accelerated SGD: Ruder, Sebastian. "An overview of gradient descent
optimization algorithms." arXiv preprint arXiv:1609.04747 (2016).

First SGD in ML paper:

Léon Bottou and Olivier Bousquet: The Tradeoffs of Large Scale
Learning, Advances in Neural Information Processing Systems, 20, MIT Press,
Cambridge, MA, 2008.

THANKS

QUESTIONS?

Email: sourangshu@cse.iitkgp.ac.in

mailto:sourangshu@cse.iitkgp.ac.in

