CS60021: Scalable Data Mining

Sourangshu Bhattacharya

COURSE BACKGROUND

What is Data Mining?

- Given lots of data
- Discover patterns and models that are:
 - Valid: should hold on new data with some certainty
 - Useful: should be possible to act on the item
 - Unexpected: non-obvious to the system
 - Understandable: humans should be able to interpret the pattern

 A lot of the Data Mining Techniques are borrowed from Machine Learning / Deep Learning techniques.

Data Mining: Cultures

- Data mining overlaps with:
 - Databases: Large-scale data, simple queries
 - Machine learning: Small data, Complex models
 - CS Theory: (Randomized) Algorithms
- In this course,
 we will explore
 scalable algorithms
 and systems for Data
 Mining.

This Course

- This class overlaps with machine learning, statistics, artificial intelligence, databases but more stress on
 - Algorithms
 - Online / Streaming
 - Optimization
 - Computing architectures

Pre-requisites

- Algorithms.
- Machine Learning / Data Analytics / Information Retrieval.

- Linear Algebra
- Probability, statistics, calculus

EXAMPLE APPLICATIONS

Analytics: Word Count Distribution

- Motivation: Compute word-bigram count distribution for wikipedia corpus.
 - 5 million documents
 - 1.9 million unique words, ? bigrams
- Problem: Input, output and intermediate results are large.
 - Algorithm is simple. Implementation.
 - Spark: Map-reduce framework.

- Online version: Sketching algorithms for finding frequency of most frequent items:
 - Misra-Gries Sketching
 - Count-min and Count sketch.

Large Scale Machine Learning

- Train Massive deep learning models on massive datasets.
- Dataset too large:
 - Speed up train by speeding up optimization
 - Acceleration techniques
 - Distributed optimization.
- Model size too big:
 - Reduce redundant parameters using LSH.
 - LoRA parameter fine-tuning.

Nearest Neighbor Search (LSH)

- Active learning / Subset selection
 - Calculate pairwise similarity between examples
 - Select examples which provide highest improvement in loss function and are most similar to other non-selected examples.
- Compute similarity to all existing examples in dataset and pick the top ones.
 - Fast nearest neighbor seach.

SYLLABUS

Syllabus

- Optimization and Machine learning algorithms:
 - Optimization algorithms: Stochastic gradient descent,
 Variance reduction, Momentum algorithms, ADAM. Dual-coordinate descent algorithms.
 - Algorithms for distributed optimization: Stochastic gradient descent and related methods. ADMM and decomposition methods, Federated Learning.

Syllabus

Software paradigms:

- Big Data Processing: Motivation and Fundamentals. Mapreduce framework. Functional programming and Scala.
 Programming using map-reduce paradigm. Example programs.
- Deep Learning Frameworks (Pytorch): Motivation,
 Computation graphs, Tensors, Autograd, Modules,
 Example programs.

Syllabus

Algorithmic techniques:

- Subset Selection: Formulations, Coresets, Submodular optimization, Orthogonal Matching Pursuit, Online Convexoptimization.
- Finding similar items: Shingles, Minhashing, Locality
 Sensitive Hashing families.
- Stream processing: Motivation, Sampling, Bloom filtering,
 Count-distinct using FM sketch, Estimating moments using
 AMS sketch.

Syllabus (New addition)

LLM finetuning:

- Transformer architecture, LORA updates., Flash attention.
- Long context modelling.

COURSE DETAILS

Venue

Classroom: NR - 121

- Slots:
 - Monday (11:00 11:55)
 - Tuesday (8:00 9:55)
- Website:

https://cse.iitkgp.ac.in/~sourangshu/coursefiles/cs60021 2025a.html

 Moodle (for assignment submission): https://moodlecse.iitkgp.ac.in/moodle/

Teaching Assistants

- Saptarshi Mondal
- Suman Kumar Bera
- Vaishnovi Arun

Evaluation

- Grades:
 - Midsem, Endsem: 60 70
 - Class Test + Assignments: 30 40
 - Term Project (optional): 10
- Assignments: 2 3
- Both Term Project and assignment will require you to write code.

Tentative Schedule (Changeable)

Week	Dates	Topics	Class Test	Assignment
-	1 28/7, 29/7	Introduction to DM, ML, Stochastic gradient descent.		
	2 4/8, 5/8	SGD convergence rate, Accelerated SGD		Assignment 1 (SGD experiment)
3	3 11/8, 12/8	SGD variance reduction		
4	18/8, 19/8	Distributed Optimization, ADMM	CT1 (SGD + Variants)	
į	5 25/8, 26/8	Map-reduce framework, Hadoop / Spark		Assignment 2 (Pyspark + Pytorch)
(5 1/9, 2/9	Spark / DL frameworks (GPU)		
-	7 8/9, 9/9	DL frameworks, Subset selection	CT2 (Dist. Opt. + Hadoop/Spark)	
8	3 15/9, 16/9	Subset Selection		
		Mid-sem		
		Autumn Break		
<u>(</u>	6/10, 7/10	Approximate NNS - Locality Sensitive Hashing		Assignment 3 (ANNS)
10	13/10, 14/10	ANNS - HNSW		
13	20/10, 21/10	Streaming - Sampling, Set Membership, Distinct Count		
12	27/10, 28/10	Streaming - Frequency Counting	CT3 (ANNS + Sampling)	
13	3/11, 4/11	Transformer Models, LoRA Fine-tuning, Flash Attention		
14	10/11, 11/11	Long context modelling		

Attend classes regularly!

Don't count on material that you can just "cover" before the exam and get a decent grade.

THANKS!