
CS60021: Scalable Data Mining

Similarity Search and Hashing

Sourangshu Bhattacharya

Finding Similar Items

Distance Measures
 Goal: Find near-neighbors in high-dim. space
– We formally define “near neighbors” as

points that are a “small distance” apart

• For each application, we first need to define what “distance”
means

• Today: Jaccard distance/similarity
– The Jaccard similarity of two sets is the size of their intersection divided

by the size of their union:
sim(C1, C2) = |C1C2|/|C1C2|

– Jaccard distance: d(C1, C2) = 1 - |C1C2|/|C1C2|

3

3 in intersection

8 in union

Jaccard similarity= 3/8

Jaccard distance = 5/8

Task: Finding Similar Documents

4

3 Essential Steps for Similar Docs

5

The Big Picture

6

Docu-

ment

The set

of strings

of length k

that appear

in the doc-

ument

Signatures:

short integer

vectors that

represent the

sets, and

reflect their

similarity

Locality-

Sensitive

Hashing

Candidate

pairs:

those pairs

of signatures

that we need

to test for

similarity

Shingling

Step 1: Shingling: Convert documents to sets

Docu-
ment

The set
of strings
of length k
that appear
in the doc-
ument

Documents as High-Dim Data

8

Define: Shingles

9

Represent Shingles

• To compress long shingles, we can hash them to (say) 4 bytes

• Represent a document by the set of hash values of its k-
shingles
– Idea: Two documents could (rarely) appear to have shingles in

common, when in fact only the hash-values were shared

• Example: k=2; document D1= abcab

Set of 2-shingles: S(D1) = {ab, bc, ca}
Hash the singles: h(D1) = {1, 5, 7}

10

Similarity Metric for Shingles

• Document D1 is a set of its k-shingles C1=S(D1)

• Equivalently, each document is a
0/1 vector in the space of k-shingles
– Each unique shingle is a dimension

– Vectors are very sparse

• A natural similarity measure is the
Jaccard similarity:

sim(D1, D2) = |C1C2|/|C1C2|

11

Working Assumption

12

Motivation for Minhash / LSH

13

MinHashing

Step 2: Minhashing: Convert large sets to
short signatures, while preserving similarity

Docu-
ment

The set
of strings
of length k
that appear
in the doc-
ument

Signatures:
short integer
vectors that
represent the
sets, and
reflect their
similarity

Encoding Sets as Bit Vectors

15

From Sets to Boolean Matrices
• Rows = elements (shingles)

• Columns = sets (documents)
– 1 in row e and column s if and only if e is a

member of s

– Column similarity is the Jaccard similarity of the
corresponding sets (rows with value 1)

– Typical matrix is sparse!

• Each document is a column:
– Example: sim(C1 ,C2) = ?

• Size of intersection = 3; size of union = 6,
Jaccard similarity (not distance) = 3/6

• d(C1,C2) = 1 – (Jaccard similarity) = 3/6

16

0101

0111

1001

1000

1010

1011

0111

Documents

S
h

in
g

le
s

Outline: Finding Similar Columns
• So far:

– Documents → Sets of shingles

– Represent sets as boolean vectors in a matrix

• Next goal: Find similar columns while
computing small signatures

– Similarity of columns == similarity of signatures

17

Outline: Finding Similar Columns
• Next Goal: Find similar columns, Small signatures

• Naïve approach:

– 1) Signatures of columns: small summaries of columns

– 2) Examine pairs of signatures to find similar columns

• Essential: Similarities of signatures and columns are related

– 3) Optional: Check that columns with similar signatures
are really similar

• Warnings:

– Comparing all pairs may take too much time: Job for LSH

• These methods can produce false negatives, and even false
positives (if the optional check is not made)

18

Hashing Columns (Signatures)

19

Min-Hashing

20

21

Min-Hashing

22

Min-Hashing Example

3

4

7

2

6

1

5

Signature matrix M

1212

5

7

6

3

1

2

4

1412

4

5

1

6

7

3

2

2121

2nd element of the permutation

is the first to map to a 1

4th element of the permutation

is the first to map to a 1

0101

0101

1010

1010

1010

1001

0101

Input matrix (Shingles x Documents) Permutation 

The Min-Hash Property
• Choose a random permutation 

• Claim: Pr[h(C1) = h(C2)] = sim(C1, C2)

• Why?
– Let X be a doc (set of shingles), y X is a shingle

– Then: Pr[(y) = min((X))] = 1/|X|

• It is equally likely that any y X is mapped to the min element

– Let y be s.t. (y) = min((C1C2))

– Then either: (y) = min((C1)) if y  C1 , or

(y) = min((C2)) if y  C2

– So the prob. that both are true is the prob. y  C1  C2

– Pr[min((C1))=min((C2))]=|C1C2|/|C1C2|= sim(C1, C2)

23

01

10

00

11

00

00

One of the two

cols had to have

1 at position y

Four Types of Rows
• Given cols C1 and C2, rows may be classified as:

C1 C2

A 1 1

B 1 0

C 0 1

D 0 0

– a = # rows of type A, etc.

• Note: sim(C1, C2) = a/(a +b +c)

• Then: Pr[h(C1) = h(C2)] = Sim(C1, C2)
– Look down the cols C1 and C2 until we see a 1

– If it’s a type-A row, then h(C1) = h(C2)
If a type-B or type-C row, then not

24

25

Similarity for Signatures

26

Min-Hashing Example

Similarities:
1-3 2-4 1-2 3-4

Col/Col 0.75 0.75 0 0
Sig/Sig 0.67 1.00 0 0

Signature matrix M

1212

5

7

6

3

1

2

4

1412

4

5

1

6

7

3

2

2121

0101

0101

1010

1010

1010

1001

0101

Input matrix (Shingles x Documents)

3

4

7

2

6

1

5

Permutation 

Min-Hash Signatures

27

Implementation Trick
• Permuting rows even once is prohibitive

• Row hashing!

– Pick K = 100 hash functions ki

– Ordering under ki gives a random row permutation!

• One-pass implementation

– For each column C and hash-func. ki keep a “slot” for the min-
hash value

– Initialize all sig(C)[i] = 

– Scan rows looking for 1s
• Suppose row j has 1 in column C

• Then for each ki :

– If ki(j) < sig(C)[i], then sig(C)[i]  ki(j)

28

How to pick a random

hash function h(x)?

Universal hashing:

ha,b(x)=((a·x+b) mod p) mod N

where:

a,b … random integers

p … prime number (p > N)

Locality Sensitive Hashing

Docu-
ment

The set
of strings
of length k
that appear
in the doc-
ument

Signatures:
short integer
vectors that
represent the
sets, and
reflect their
similarity

Locality-
Sensitive
Hashing

Candidate
pairs:
those pairs
of signatures
that we need
to test for
similarity

LSH: First Cut

30

Candidates from Min-Hash

31

LSH for Min-Hash

32

Partition M into b Bands

33
Signature matrix M

r rows
per band

b bands

One
signature

Partition M into Bands

34

Matrix M

r rows b bands

Buckets
Columns 2 and 6

are probably identical

(candidate pair)

Columns 6 and 7 are

surely different.

Hashing Bands

35

Simplifying Assumption

36

Example of Bands

37

C1, C2 are 80% Similar
• Find pairs of  s=0.8 similarity, set b=20, r=5

• Assume: sim(C1, C2) = 0.8
– Since sim(C1, C2)  s, we want C1, C2 to be a candidate

pair: We want them to hash to at least 1 common bucket
(at least one band is identical)

• Probability C1, C2 identical in one particular
band: (0.8)5 = 0.328

• Probability C1, C2 are not similar in all of the 20
bands: (1-0.328)20 = 0.00035
– i.e., about 1/3000th of the 80%-similar column pairs

are false negatives (we miss them)

– We would find 99.965% pairs of truly similar documents
38

C1, C2 are 30% Similar
• Find pairs of  s=0.8 similarity, set b=20, r=5

• Assume: sim(C1, C2) = 0.3
– Since sim(C1, C2) < s we want C1, C2 to hash to NO

common buckets (all bands should be different)

• Probability C1, C2 identical in one particular
band: (0.3)5 = 0.00243

• Probability C1, C2 identical in at least 1 of 20
bands: 1 - (1 - 0.00243)20 = 0.0474
– In other words, approximately 4.74% pairs of docs

with similarity 0.3% end up becoming candidate pairs
• They are false positives since we will have to examine them

(they are candidate pairs) but then it will turn out their
similarity is below threshold s 39

LSH Involves a Tradeoff

40

Analysis of LSH – What We Want

Similarity t =sim(C1, C2) of two sets

Probability
of sharing
a bucket

S
im

ila
ri
ty

 t
h
re

sh
o
ld

 s

No chance
if t < s

Probability = 1
if t > s

41

What 1 Band of 1 Row Gives You

42

Remember:
Probability of
equal hash-values
= similarity

Similarity t =sim(C1, C2) of two sets

Probability
of sharing
a bucket

b bands, r rows/band

43

What b Bands of r Rows Gives You

s r

All rows
of a band
are equal

1 -

Some row
of a band
unequal

()b

No bands
identical

1 -

At least
one band
identical

s ~ (1/b)1/r

44

Similarity t=sim(C1, C2) of two sets

Probability
of sharing
a bucket

Example: b = 20; r = 5

• Similarity threshold s

• Prob. that at least 1 band is identical:

45

s 1-(1-sr)b

.2 .006

.3 .047

.4 .186

.5 .470

.6 .802

.7 .975

.8 .9996

Picking r and b: The S-curve

• Picking r and b to get the best S-curve

– 50 hash-functions (r=5, b=10)

46

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Blue area: False Negative rate
Green area: False Positive rate

Similarity

P
ro

b
. s

h
ar

in
g

a
b

u
ck

et

LSH Summary

47

Summary: 3 Steps
• Shingling: Convert documents to sets

– We used hashing to assign each shingle an ID

• Min-Hashing: Convert large sets to short signatures, while
preserving similarity
– We used similarity preserving hashing to generate signatures with

property Pr[h(C1) = h(C2)] = sim(C1, C2)

– We used hashing to get around generating random permutations

• Locality-Sensitive Hashing: Focus on pairs of signatures likely to
be from similar documents

– We used hashing to find candidate pairs of similarity  s

48

49

References:

• Primary references for this lecture
• Modern Massive Datasets, Rajaraman, Leskovec, Ullman.
• Survey by Andoni et al. (CACM 2008) available at www.mit.edu/~andoni/LSH

http://www.mit.edu/~andoni/LSH

