CS60021: Scalable Data Mining

Streaming Algorithms

Sourangshu Bhattacharya

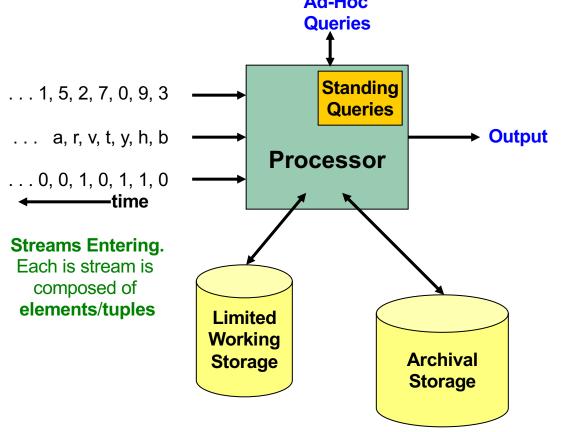
Data Streams

- In many data mining situations, we do not know the entire data set in advance
- Stream Management is important when the input rate is controlled externally:
 - Google Trends
 - Twitter or Facebook status updates
- We can think of the data as infinite and non-stationary (the distribution changes over time)

The Stream Model

- Input elements enter at a rapid rate, at one or more input ports (i.e., streams)
 - We call elements of the stream tuples
- The system cannot store the entire stream accessibly
- Q: How do you make critical calculations about the stream using a limited amount of (secondary) memory?

General Stream Processing Model



Reservoir Sampling

Maintaining a fixed-size sample

- Problem: Fixed-size sample
- Suppose we need to maintain a random sample S of size exactly s tuples
 - E.g., main memory size constraint
- Why? Don't know length of stream in advance
- Suppose at time n we have seen n items
 - Each item is in the sample S with equal prob. s/n

How to think about the problem: say s = 2Stream: $a \times c y \times z \times c d = g...$

At **n= 5**, each of the first 5 tuples is included in the sample **S** with equal prob. At **n= 7**, each of the first 7 tuples is included in the sample **S** with equal prob.

Impractical solution would be to store all the *n* tuples seen so far and out of them pick *s* at random

Solution: Fixed Size Sample

- Algorithm (a.k.a. Reservoir Sampling)
 - Store all the first s elements of the stream to S
 - Suppose we have seen n-1 elements, and now the n^{th} element arrives (n > s)
 - With probability s/n, keep the n^{th} element, else discard it
 - If we picked the nth element, then it replaces one of the
 s elements in the sample S, picked uniformly at random
- Claim: This algorithm maintains a sample S
 with the desired property:
 - After *n* elements, the sample contains each element seen so far with probability *s/n*

Proof: By Induction

We prove this by induction:

- Assume that after *n* elements, the sample contains each element seen so far with probability *s/n*
- We need to show that after seeing element n+1 the sample maintains the property
 - Sample contains each element seen so far with probability s/(n+1)

Base case:

- After we see n=s elements the sample S has the desired property
 - Each out of n=s elements is in the sample with probability s/s = 1

Proof: By Induction

- **Inductive hypothesis:** After *n* elements, the sample *S* contains each element seen so far with prob. s/n
- Now element *n+1* arrives
- **Inductive step:** For elements already in **S**, probability that the algorithm keeps it in **S** is:

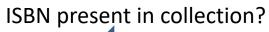
$$\left(1 - \frac{s}{n+1}\right) + \left(\frac{s}{n+1}\right)\left(\frac{s-1}{s}\right) = \frac{n}{n+1}$$

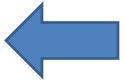
Element n+1 discarded Element n+1 Element in the not discarded sample not picked

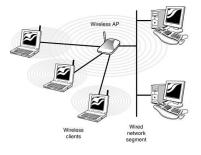
- So, at time **n**, tuples in **S** were there with prob. **s/n**
- Time $n \rightarrow n+1$, tuple stayed in S with prob. n/(n+1)
- So prob. tuple is in **S** at time $n+1 = \frac{s}{n} \cdot \frac{n}{n+1} = \frac{s}{n+1}$

Bloom Filters

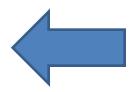
Querying







IP seen by switch?



10.0.21.102

Solutions

- Universe U, but need to store a set of n items, $n \ll |U|$
- Hash table of size m:
 - Space $O(n \log |U|)$
 - Query time $O\left(\frac{n}{m}\right)$

Exact Solutions

- Universe U, but need to store a set of n items, $n \ll |U|$
- Hash table of size m:
 - Space $O(n \log |U|)$
 - Query time $O\left(\frac{n}{m}\right)$
- Bit array of size |U|
 - Space = |U|
 - Query time O(1)

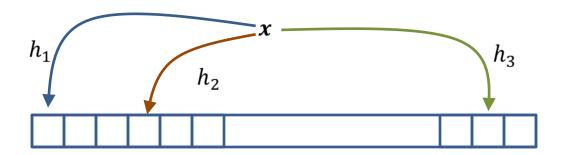
Querying, Monte Carlo style

- In hash table construction, we used random hash functions
 - we never return incorrect answer
 - query time is a random variable
 - These are Las Vegas algorithms
- In Monte-Carlo randomized algorithms, we are allowed to return incorrect answers with (small) probability, say, δ

Bloom filter

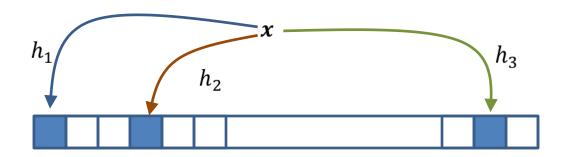
[Bloom, 1970]

- A bit-array B, |B| = m
- k hash functions, $h_1, h_2, ..., h_k$, each $h_i \in U \rightarrow [m]$



Bloom filter

- A bit-array B, |B| = m
- k hash functions, $h_1, h_2, ..., h_k$, each $h_i \in U \rightarrow [m]$



Operations

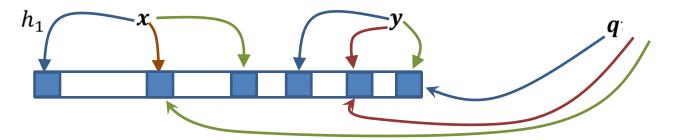
- *Initialize(B)*
 - for $i \in \{1, ... m\}$, B[i] = 0
- Insert(B,x)
 - for $i \in \{1, ... k\}$, $B[h_i(x)] = 1$
- Lookup (B, x)
 - $\ \ \mathsf{If} \ \bigwedge_{i \in \{1, \dots k\}} B[h_i(x)] \ , \mathsf{return} \ \mathsf{PRESENT}, \mathsf{else} \ \mathsf{ABSENT}$

Bloom Filter

• If the element x has been added to the Bloom filter, then Lookup(B,x) always return PRESENT

Bloom Filter

- If the element x has been added to the Bloom filter, then Lookup(B, x) always return PRESENT
- If x has not been added to the filter before?
 - Lookup sometimes still return PRESENT



Designing Bloom Filter

- Want to minimize the probability that we return a false positive
- Parameters m = |B| and k = number of hash functions
- $k = 1 \Rightarrow$ normal bit-array
- What is effect of changing k?

Effect of number of hash functions

- Increasing k
 - Possibly makes it harder for false positives to happen in Lookup because of $\bigwedge_{i \in \{1,...k\}} B[h_i(x)]$

- But also increases the number of filled up positions
- We can analyse to find out an "optimal k"

False positive analysis

- m = |B|, n elements inserted
- If x has not been inserted, what is the probability that Lookup(B, x) returns PRESENT?

False positive analysis

- m = |B|, n elements inserted
- If x has not been inserted, what is the probability that Lookup(B, x) returns PRESENT?
- Assume $\{h_1, h_2, ..., h_k\}$ are independent and $\Pr[h_i(\cdot) = j] = \frac{1}{m}$ for all positions j

False positive analysis

Probability of a bit being zero:

$$P[B_j = 0] = \left(1 - \frac{1}{m}\right)^{kn} \approx e^{-\frac{kn}{m}}$$

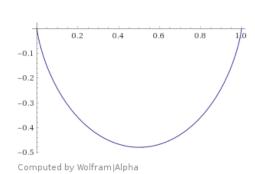
- The expected number of zero bits is given by: $me^{-kn/m}$.
- $P[lookup(B,x) = PRESENT] = \left(1 e^{-\frac{kn}{m}}\right)^k$
- We can choose k to minimize this probability.

Choosing number of hash functions

- $p = e^{-kn/m}$
- Log (False Positive) =

$$\log(1 - p)^k = k \log(1 - p) = -\frac{m}{n} \log(p) \log(1 - p)$$

Minimized at $p = \frac{1}{2}$, i.e. $k = m \log(2)/n$



Bloom filter design

• This "optimal" choice gives false positive = $2^{-m \log(2)/n}$

• If we want a false positive rate of δ , set m=

$$\frac{\log\left(\frac{1}{\delta}\right)n}{\log^2(2)}$$

Example: If we want 1% FPR, we need 7 hash functions and total 10n bits

Applications

- Widespread applications whenever small false positives are tolerable
- Used by browsers
 - to decide whether an URL is potentially malicious: a BF is used in browser, and positives are actually checked with the server.
- Databases e.g. BigTable, HBase, Cassandra, Postgrepsql use BF to avoid disk lookups for non-existent rows/columns
- Bitcoin for wallet synchronization....

Handling deletions

Chief drawback is that BF does not allow deletions

[Fan et al 00]

- Counting Bloom Filter
 - Every entry in BF is a small counter rather than a single bit
 - Insert(x) increments all counters for $\{h_i(x)\}$ by 1
 - Delete(x) decrements all $\{h_i(x)\}$ by 1
 - maintains 4 bits per counter
 - False negatives can happen, but only with low probability

References:

- Mining massive Datasets by Leskovec, Rajaraman, Ullman, Chapter 4.
- Primary reference for this lecture
 - Survey on Bloom Filter, Broder and Mitzenmacher 2005, https://www.eecs.harvard.edu/~michaelm/postscripts/im2005b.pdf
 - http://www.firatatagun.com/blog/2016/09/25/bloom-filters-explanation-use-cases-and-examples/
- Others
 - Randomized Algorithms by Mitzenmacher and Upfal.