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CPU VS GPU

Slides taken from:

Fei-Fei Li & Justin Johnson & Serena Yeung, Stanford University



Spot the CPU!
(central processing unit)

This image is licensed under CC-BY 2.0
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Spot the GPUs!
(graphics processing unit)

This image is in the public domain
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CPU vs GPU
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# Cores Clock Speed Memory Price

CPU
(Intel Core  
i7-7700k)

4
(8 threads with  
hyperthreading
)

4.4 GHz Shared with system $339

CPU
(Intel Core  
i7-6950X)

10
(20 threads  with  
hyperthreading
)

3.5 GHz Shared with system $1723

GPU
(NVIDIA
Titan Xp)

3840 1.6 GHz 12 GB GDDR5X $1200

GPU  
(NVIDIA  
GTX 1070)

1920 1.68 GHz 8 GB GDDR5 $399

CPU: Fewer cores,  

but each core is  

much faster and  

much more  

capable; great at  

sequential tasks

GPU: More cores,  

but each core is  

much slower and  

“dumber”; great for  

parallel tasks



CPU vs GPU in practice
(CPU performance not

well-optimized, a little unfair)

66x 67x 71x 64x 76x

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 27, 2017

Data from https://github.com/jcjohnson/cnn-benchmarks
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CPU vs GPU in practice
cuDNN much faster than  

“unoptimized” CUDA

2.8x 3.0x 3.1x 3.4x 2.8x

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 27, 2017

Data from https://github.com/jcjohnson/cnn-benchmarks
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CPU / GPU Communication

Model  

is here
Data is here

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 27, 2017Lecture 8 -

April 27, 2017
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If you aren’t careful, training can  

bottleneck on reading data and  

transferring to GPU!

Solutions:

-Read all data into RAM

-Use SSD instead of HDD

-Use multiple CPU threads  to 

prefetch data



ML AND TENSORFLOW

Slides taken from:

Ali Ghodsi and Ion Stoica, UC Berkeley



What is TensorFlow

• Key idea: express a numeric computation as a graph

• Graph nodes are operations with any number of inputs and 
outputs

• Graph edges are tensors which flow between nodes



Code
import tensorflow as tf

b = tf.Variable(tf.zeros((100,)))

W = tf.Variable(tf.random_uniform((784, 100), -1, 1))

x = tf.placeholder(tf.float32, (1, 784))

h = tf.nn.relu(tf.matmul(x, W) + b)



Running the graph

Deploy graph with a session: a 

binding to a particular execution 

context (e.g. CPU, GPU) CPU

GPU



End-to-end

• So far:
– Built a graph using variables and placeholders
– Deploy the graph onto a session, i.e., execution environment

• Next: train model

– Define loss function

– Compute gradients



Defining loss

• Use placeholder for labels

• Build loss node using labels and prediction



Gradient computation: Backpropagation

train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)

tf.train.GradientDescentOptimizer is an Optimizer object

tf.train.GradientDescentOptimizer(lr).minimize(cross_entropy) 
adds optimization operation to computation graph

TensorFlow graph nodes have attached gradient operations

Gradient with respect to parameters computed with 

backpropagation … automatically



Design Principles

• Dataflow graphs of primitive operators

• Deferred execution (two phases)

1. Define program i.e., symbolic dataflow graph w/ placeholders

2. Executes optimized version of program on set of available devices

• Common abstraction for heterogeneous accelerators

1. Issue a kernel for execution

2. Allocate memory for inputs and outputs

3. Transfer buffers to and from host memory



Dynamic Flow Control

• Problem: support ML algos that contain conditional and 
iterative control flow, e.g.  

– Recurrent Neural Networks (RNNs)

– Long-Short Term Memory (LSTM)

• Solution: Add conditional (if statement) and iterative (while 
loop) programming constructs



DEEP LEARNING FRAMEWORKS

Slides taken from:

Fei-Fei Li & Justin Johnson & Serena Yeung, Stanford University



Major DL Frameworks Today

Caffe
(UC Berkeley)

Torch
(NYU / Facebook)

Theano
(U Montreal)

TensorFlow
(Google)

Caffe2
(Facebook)

PyTorch
(Facebook)

Mostly these

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 27, 2017Lecture 8 -
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CNTK
(Microsoft)

Paddle
(Baidu)

MXNet
(Amazon)
Developed by U Washington, CMU, MIT,

Hong Kong U, etc but main framework of

choice at AWS

And others...



The point of deep learning frameworks
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(1) Easily build big computational graphs

(2) Easily compute gradients in computational graphs

(3) Run it all efficiently on GPU (wrap cuDNN, cuBLAS, etc)



Computational Graphs

x y z

*

a
+

b

Σ

c

Numpy

Problems:

- Can’t run on GPU

- Have to compute  

our own gradients



Computational Graphs

x y z

*

a
+

b

Σ

c

Numpy

TensorFlow



Computational Graphs

x y z

*

a
+

b

Σ

c

TensorFlow

Create forward  

computational graph
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Computational Graphs

x y z

*

a
+

b

Σ

c

TensorFlow

Ask TensorFlow to

compute gradients
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Computational Graphs

x y z

*

a
+

b

Σ

c

TensorFlow

Tell  

TensorFlow

to run on CPU
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Computational Graphs

x y z

*

a
+

b

Σ

c

TensorFlow

Tell  

TensorFlow

to run on GPU
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Computational Graphs

x y z

*

a
+

b

Σ

c

PyTorch
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Computational Graphs

x y z

*

a
+

b

Σ

c

PyTorch

Define Variables to
start building a  computational 

graph
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Computational Graphs

x y z

*

a
+

b

Σ

c

PyTorch

Forward pass
looks just like  numpy
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Computational Graphs

x y z

*

a
+

b

Σ

c

PyTorch

Calling c.backward()
computes all  gradients
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Computational Graphs

x y z

*

a
+

b

Σ

c

PyTorch

Run on GPU by  

casting to .cuda()
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PyTorchTensorFlowNumpy



TensorFlow (more detail)
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TensorFlow:  
Neural Net

Lecture 8 -4141

Running example: Train  

a two-layer ReLU  

network on random data  

with L2 loss



TensorFlow:  
Neural Net

(Assume imports at the  

top of each snipppet)

Lecture 8 -4242



TensorFlow:  
Neural Net

First define

computational graph

Then run the graph  

many times

Lecture 8 -4343



TensorFlow:  

Neural Net

Create placeholders for  

input x, weights w1 and  

w2, and targets y

Lecture 8 -4444



TensorFlow:  
Neural Net

Forward pass: compute

prediction for y and loss

(L2 distance between y

and y_pred)

No computation  

happens here - just  

building the graph!

Lecture 8 -4545



TensorFlow:  
Neural Net

Tell TensorFlow to  

compute loss of gradient  

with respect to w1 and  

w2.

Again no computation

here - just building the

graph

Lecture 8 -4646



TensorFlow:  
Neural Net

Now done building our  

graph, so we enter a  

session so we can  

actually run the graph

Lecture 8 -4747



TensorFlow:  
Neural Net

Create numpy arrays  

that will fill in the  

placeholders above

Lecture 8 -4848



TensorFlow:  
Neural Net

Run the graph: feed in  

the numpy arrays for x,  

y, w1, and w2; get  

numpy arrays for loss,  

grad_w1, and grad_w2
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TensorFlow:  
Neural Net

Train the network: Run  

the graph over and over,  

use gradient to update  

weights

Lecture 8 -5050



TensorFlow:  
Neural Net

Train the network: Run  

the graph over and over,  

use gradient to update  

weights

Problem: copying  

weights between CPU /  

GPU each step

Lecture 8 -5151



TensorFlow:  
Neural Net

Change w1 and w2 from  

placeholder (fed on  

each call) to Variable  

(persists in the graph  

between calls)

Lecture 8 -5252



TensorFlow:  
Neural Net

Add assign operations  

to update w1 and w2 as  

part of the graph!

Lecture 8 -5353



TensorFlow:  
Neural Net

Run graph once to  

initialize w1 and w2

Run many times to train

Lecture 8 -5454



TensorFlow:  
Neural Net

Problem: loss not going  

down! Assign calls not  

actually being executed!

Lecture 8 -5555



TensorFlow:  
Neural Net

Add dummy graph node  

that depends on updates

Tell graph to compute  

dummy node

Lecture 8 -5656



TensorFlow:  
Optimizer

Can use an optimizer to  

compute gradients and  

update weights

Remember to execute the  

output of the optimizer!

Lecture 8 -5757



TensorFlow:  

Loss

Use predefined  

common lossees

Lecture 8 -5858



PyTorch (more detail)
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PyTorch: Three Levels of Abstraction

Lecture 8 -8181

• Tensor: Imperative ndarray,  but 

runs on GPU

• Variable: Node in a  

computational graph; stores  data 

and gradient

• Module: A neural network  

layer; may store state or  

learnable weights

TensorFlow equivalent

Numpy array

Tensor, Variable, Placeholder

tf.layers, or TFSlim, or TFLearn,  or 

Sonnet, or ….



PyTorch: Tensors

Lecture 8 -8282

Fei-Fei Li & Justin Johnson & Serena Yeung

PyTorch Tensors are just like numpy  

arrays, but they can run on GPU.

No built-in notion of computational  

graph, or gradients, or deep learning.

Here we fit a two-layer net using  

PyTorch Tensors:



PyTorch: Tensors

Create random tensors  

for data and weights
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PyTorch: Tensors

Forward pass: compute  

predictions and loss

Lecture 8 -8484

Fei-Fei Li & Justin Johnson & Serena Yeung



PyTorch: Tensors

Backward pass:  

manually compute  

gradients
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PyTorch: Tensors

Gradient descent  

step on weights

Lecture 8 -8686
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PyTorch: Tensors

To run on GPU, just cast  

tensors to a cuda datatype!

Lecture 8 -8787
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PyTorch: Autograd

Lecture 8 -8888

Fei-Fei Li & Justin Johnson & Serena Yeung

A PyTorch Variable is a node in a  

computational graph

x.data is a Tensor

x.grad is a Variable of gradients  

(same shape as x.data)

x.grad.data is a Tensor of gradients



PyTorch: Autograd

Lecture 8 -8989
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PyTorch Tensors and Variables  

have the same API!

Variables remember how they were  

created (for backprop)



PyTorch: Autograd

We will not want gradients  

(of loss) with respect to data

Do want gradients with  

respect to weights
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PyTorch: Autograd

Forward pass looks exactly  
the same as the Tensor  version, but 

everything is a  variable now

Lecture 8 -9191
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PyTorch: Autograd

Compute gradient of loss
with respect to w1 and w2  (zero out 

grads first)

Lecture 8 -9292



PyTorch: Autograd

Make gradient

step on weights

Lecture 8 -9393
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PyTorch: New Autograd Functions

Define your own autograd  

functions by writing forward  

and backward for Tensors

(similar to modular layers in A2)

Lecture 8 -9494
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PyTorch: New Autograd Functions

Can use our new autograd  

function in the forward pass

Lecture 8 -9595



PyTorch: nn

Higher-level wrapper for  

working with neural nets

Similar to Keras and friends …  

but only one, and it’s good =)

Lecture 8 -9696
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PyTorch: nn

Define our model as a

sequence of layers

nn also defines common  loss 

functions

Lecture 8 -9797
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PyTorch: nn

Forward pass: feed data
to model, and prediction  to loss 

function

Lecture 8 -9898



PyTorch: nn

Backward pass:  

compute all gradients

Lecture 8 -9999



Fei-Fei Li & Justin Johnson & Serena Yeung April 27, 2017
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PyTorch: nn

Make gradient step on

each model parameter

Lecture 8 - 100
0
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PyTorch: optim

Use an optimizer for

different update rules

Lecture 8 - 101
1



PyTorch: optim

Update all parameters  

after computing gradients

10
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PyTorch: nn
Define new Modules

10
Lecture 8 - 103
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A PyTorch Module is a neural net  

layer; it inputs and outputs Variables

Modules can contain weights (as  

Variables) or other Modules

You can define your own Modules  

using autograd!



PyTorch: nn

Define new Modules

Define our whole model  

as a single Module

10
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PyTorch: nn

Define new Modules

Initializer sets up two  

children (Modules can  

contain modules)

10
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PyTorch: nn
Define new Modules

Define forward pass using  

child modules and  

autograd ops on Variables

No need to define  

backward - autograd will  

handle it

10
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PyTorch: nn
Define new Modules

Construct and train an  

instance of our model

10
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PyTorch: DataLoaders

A DataLoader wraps a  

Dataset and provides  

minibatching, shuffling,  

multithreading, for you

When you need to load  

custom data, just write  

your own Dataset class

10
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PyTorch: DataLoaders

Iterate over loader to form  

minibatches

Loader gives Tensors so you  

need to wrap in Variables

10
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PyTorch: Pretrained Models

Super easy to use pretrained models with 

torchvision  https://github.com/pytorch/vision

11
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https://github.com/pytorch/vision


Static vs Dynamic Graphs
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Static vs Dynamic Graphs
TensorFlow: Build graph once, then  

run many times (static)

PyTorch: Each forward pass defines  

a new graph (dynamic)

Build  

graph

Run each  

iteration

New graph each iteration

Lecture 8 - 120



Static vs Dynamic: Optimization

With static graphs,  

framework can  

optimize the  

graph for you  

before it runs!

Conv

ReLU

Conv

ReLU

Conv

ReLU

The graph you wrote Equivalent graph with

fused operations

Conv+ReLU

Conv+ReLU

Conv+ReLU

April 27, 2017Fei-Fei Li & Justin Johnson & Serena Yeung



Static vs Dynamic: Serialization

Static

Once graph is built, 

can  serialize it and 

run it  without the code 

that  built the graph!

Dynamic

Graph building and 

execution  are intertwined, 

so always  need to keep 

code around
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Static vs Dynamic: Conditional

y =
w1 * x  

w2 * x

3

if z > 0  

otherwise

Lecture 8 - 123



Fei-Fei Li & Justin Johnson & Serena Yeung April 27, 2017
12

Static vs Dynamic: Conditional

y =
w1 * x  

w2 * x

if z > 0  

otherwise

PyTorch: Normal Python

4
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Static vs Dynamic: Conditional

y =
w1 * x  

w2 * x

if z > 0  

otherwise

PyTorch: Normal Python

TensorFlow: Special TF

control flow operator!

12
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Static vs Dynamic: Loops

yt = (yt-1+ xt) * w
y0

x1 x2 x3

+ * + * +

w

*

12
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Static vs Dynamic: Loops

y0

x1 x2 x3

+ * + * +

w

*

yt = (yt-1+ xt) * w

PyTorch: Normal Python

12
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Static vs Dynamic: Loops
TensorFlow: Special TF control flow

yt = (yt-1+ xt) * w

PyTorch: Normal Python

12
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Dynamic Graphs in TensorFlow

Lecture 8 - 93 April 27, 2017Fei-Fei Li & Justin Johnson & Serena Yeung

Looks et al, “Deep Learning with Dynamic Computation Graphs”, ICLR 2017  

https://github.com/tensorflow/fold

TensorFlow Fold make dynamic  

graphs easier in TensorFlow  

through dynamic batching

https://github.com/tensorflow/fold


Tensorboard
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Visualizing 
tensorflow
graphs



Visualizing tensorflow graphs



Visualizing 
tensorflow
graphs


