
CS60021: Scalable Data Mining

Sourangshu Bhattacharya

CPU VS GPU

Slides taken from:

Fei-Fei Li & Justin Johnson & Serena Yeung, Stanford University

Spot the CPU!
(central processing unit)

This image is licensed under CC-BY 2.0

Lecture 8 -7

Fei-Fei Li & Justin Johnson & Serena Yeung

7

https://creativecommons.org/licenses/by/2.0/deed.en

Spot the GPUs!
(graphics processing unit)

This image is in the public domain

Lecture 8 -8

Fei-Fei Li & Justin Johnson & Serena Yeung

8

CPU vs GPU

Lecture 8 -1111

April 27, 2017Fei-Fei Li & Justin Johnson & Serena Yeung

Cores Clock Speed Memory Price

CPU
(Intel Core
i7-7700k)

4
(8 threads with
hyperthreading
)

4.4 GHz Shared with system $339

CPU
(Intel Core
i7-6950X)

10
(20 threads with
hyperthreading
)

3.5 GHz Shared with system $1723

GPU
(NVIDIA
Titan Xp)

3840 1.6 GHz 12 GB GDDR5X $1200

GPU
(NVIDIA
GTX 1070)

1920 1.68 GHz 8 GB GDDR5 $399

CPU: Fewer cores,

but each core is

much faster and

much more

capable; great at

sequential tasks

GPU: More cores,

but each core is

much slower and

“dumber”; great for

parallel tasks

CPU vs GPU in practice
(CPU performance not

well-optimized, a little unfair)

66x 67x 71x 64x 76x

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 27, 2017

Data from https://github.com/jcjohnson/cnn-benchmarks

Lecture 8 - 6

CPU vs GPU in practice
cuDNN much faster than

“unoptimized” CUDA

2.8x 3.0x 3.1x 3.4x 2.8x

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 27, 2017

Data from https://github.com/jcjohnson/cnn-benchmarks

Lecture 8 - 7

CPU / GPU Communication

Model

is here
Data is here

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 27, 2017Lecture 8 -

April 27, 2017

8

If you aren’t careful, training can

bottleneck on reading data and

transferring to GPU!

Solutions:

-Read all data into RAM

-Use SSD instead of HDD

-Use multiple CPU threads to

prefetch data

ML AND TENSORFLOW

Slides taken from:

Ali Ghodsi and Ion Stoica, UC Berkeley

What is TensorFlow

• Key idea: express a numeric computation as a graph

• Graph nodes are operations with any number of inputs and
outputs

• Graph edges are tensors which flow between nodes

Code
import tensorflow as tf

b = tf.Variable(tf.zeros((100,)))

W = tf.Variable(tf.random_uniform((784, 100), -1, 1))

x = tf.placeholder(tf.float32, (1, 784))

h = tf.nn.relu(tf.matmul(x, W) + b)

Running the graph

Deploy graph with a session: a

binding to a particular execution

context (e.g. CPU, GPU) CPU

GPU

End-to-end

• So far:
– Built a graph using variables and placeholders
– Deploy the graph onto a session, i.e., execution environment

• Next: train model

– Define loss function

– Compute gradients

Defining loss

• Use placeholder for labels

• Build loss node using labels and prediction

Gradient computation: Backpropagation

train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)

tf.train.GradientDescentOptimizer is an Optimizer object

tf.train.GradientDescentOptimizer(lr).minimize(cross_entropy)
adds optimization operation to computation graph

TensorFlow graph nodes have attached gradient operations

Gradient with respect to parameters computed with

backpropagation … automatically

Design Principles

• Dataflow graphs of primitive operators

• Deferred execution (two phases)

1. Define program i.e., symbolic dataflow graph w/ placeholders

2. Executes optimized version of program on set of available devices

• Common abstraction for heterogeneous accelerators

1. Issue a kernel for execution

2. Allocate memory for inputs and outputs

3. Transfer buffers to and from host memory

Dynamic Flow Control

• Problem: support ML algos that contain conditional and
iterative control flow, e.g.

– Recurrent Neural Networks (RNNs)

– Long-Short Term Memory (LSTM)

• Solution: Add conditional (if statement) and iterative (while
loop) programming constructs

DEEP LEARNING FRAMEWORKS

Slides taken from:

Fei-Fei Li & Justin Johnson & Serena Yeung, Stanford University

Major DL Frameworks Today

Caffe
(UC Berkeley)

Torch
(NYU / Facebook)

Theano
(U Montreal)

TensorFlow
(Google)

Caffe2
(Facebook)

PyTorch
(Facebook)

Mostly these

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 27, 2017Lecture 8 -

April 27, 2017Fei-Fei Li & Justin Johnson & Serena Yeung

19

CNTK
(Microsoft)

Paddle
(Baidu)

MXNet
(Amazon)
Developed by U Washington, CMU, MIT,

Hong Kong U, etc but main framework of

choice at AWS

And others...

The point of deep learning frameworks

Lecture 8 -2525

April 27, 2017Fei-Fei Li & Justin Johnson & Serena Yeung

(1) Easily build big computational graphs

(2) Easily compute gradients in computational graphs

(3) Run it all efficiently on GPU (wrap cuDNN, cuBLAS, etc)

Computational Graphs

x y z

*

a
+

b

Σ

c

Numpy

Problems:

- Can’t run on GPU

- Have to compute

our own gradients

Computational Graphs

x y z

*

a
+

b

Σ

c

Numpy

TensorFlow

Computational Graphs

x y z

*

a
+

b

Σ

c

TensorFlow

Create forward

computational graph

Lecture 8 -3030

Computational Graphs

x y z

*

a
+

b

Σ

c

TensorFlow

Ask TensorFlow to

compute gradients

Lecture 8 -3131

Computational Graphs

x y z

*

a
+

b

Σ

c

TensorFlow

Tell

TensorFlow

to run on CPU

Lecture 8 -3232

Computational Graphs

x y z

*

a
+

b

Σ

c

TensorFlow

Tell

TensorFlow

to run on GPU

Lecture 8 -3333

Computational Graphs

x y z

*

a
+

b

Σ

c

PyTorch

Lecture 8 -3434

Computational Graphs

x y z

*

a
+

b

Σ

c

PyTorch

Define Variables to
start building a computational

graph

Lecture 8 -3535

Computational Graphs

x y z

*

a
+

b

Σ

c

PyTorch

Forward pass
looks just like numpy

Lecture 8 -3636

Computational Graphs

x y z

*

a
+

b

Σ

c

PyTorch

Calling c.backward()
computes all gradients

Lecture 8 -3737

Computational Graphs

x y z

*

a
+

b

Σ

c

PyTorch

Run on GPU by

casting to .cuda()

Lecture 8 -3838

PyTorchTensorFlowNumpy

TensorFlow (more detail)

Lecture 8 -4040

TensorFlow:
Neural Net

Lecture 8 -4141

Running example: Train

a two-layer ReLU

network on random data

with L2 loss

TensorFlow:
Neural Net

(Assume imports at the

top of each snipppet)

Lecture 8 -4242

TensorFlow:
Neural Net

First define

computational graph

Then run the graph

many times

Lecture 8 -4343

TensorFlow:

Neural Net

Create placeholders for

input x, weights w1 and

w2, and targets y

Lecture 8 -4444

TensorFlow:
Neural Net

Forward pass: compute

prediction for y and loss

(L2 distance between y

and y_pred)

No computation

happens here - just

building the graph!

Lecture 8 -4545

TensorFlow:
Neural Net

Tell TensorFlow to

compute loss of gradient

with respect to w1 and

w2.

Again no computation

here - just building the

graph

Lecture 8 -4646

TensorFlow:
Neural Net

Now done building our

graph, so we enter a

session so we can

actually run the graph

Lecture 8 -4747

TensorFlow:
Neural Net

Create numpy arrays

that will fill in the

placeholders above

Lecture 8 -4848

TensorFlow:
Neural Net

Run the graph: feed in

the numpy arrays for x,

y, w1, and w2; get

numpy arrays for loss,

grad_w1, and grad_w2

Lecture 8 -4949

TensorFlow:
Neural Net

Train the network: Run

the graph over and over,

use gradient to update

weights

Lecture 8 -5050

TensorFlow:
Neural Net

Train the network: Run

the graph over and over,

use gradient to update

weights

Problem: copying

weights between CPU /

GPU each step

Lecture 8 -5151

TensorFlow:
Neural Net

Change w1 and w2 from

placeholder (fed on

each call) to Variable

(persists in the graph

between calls)

Lecture 8 -5252

TensorFlow:
Neural Net

Add assign operations

to update w1 and w2 as

part of the graph!

Lecture 8 -5353

TensorFlow:
Neural Net

Run graph once to

initialize w1 and w2

Run many times to train

Lecture 8 -5454

TensorFlow:
Neural Net

Problem: loss not going

down! Assign calls not

actually being executed!

Lecture 8 -5555

TensorFlow:
Neural Net

Add dummy graph node

that depends on updates

Tell graph to compute

dummy node

Lecture 8 -5656

TensorFlow:
Optimizer

Can use an optimizer to

compute gradients and

update weights

Remember to execute the

output of the optimizer!

Lecture 8 -5757

TensorFlow:

Loss

Use predefined

common lossees

Lecture 8 -5858

PyTorch (more detail)

Lecture 8 -4040

PyTorch: Three Levels of Abstraction

Lecture 8 -8181

• Tensor: Imperative ndarray, but

runs on GPU

• Variable: Node in a

computational graph; stores data

and gradient

• Module: A neural network

layer; may store state or

learnable weights

TensorFlow equivalent

Numpy array

Tensor, Variable, Placeholder

tf.layers, or TFSlim, or TFLearn, or

Sonnet, or ….

PyTorch: Tensors

Lecture 8 -8282

Fei-Fei Li & Justin Johnson & Serena Yeung

PyTorch Tensors are just like numpy

arrays, but they can run on GPU.

No built-in notion of computational

graph, or gradients, or deep learning.

Here we fit a two-layer net using

PyTorch Tensors:

PyTorch: Tensors

Create random tensors

for data and weights

Lecture 8 -8383

Fei-Fei Li & Justin Johnson & Serena Yeung

PyTorch: Tensors

Forward pass: compute

predictions and loss

Lecture 8 -8484

Fei-Fei Li & Justin Johnson & Serena Yeung

PyTorch: Tensors

Backward pass:

manually compute

gradients

Lecture 8 -8585

Fei-Fei Li & Justin Johnson & Serena Yeung

PyTorch: Tensors

Gradient descent

step on weights

Lecture 8 -8686

Fei-Fei Li & Justin Johnson & Serena Yeung

PyTorch: Tensors

To run on GPU, just cast

tensors to a cuda datatype!

Lecture 8 -8787

Fei-Fei Li & Justin Johnson & Serena Yeung

PyTorch: Autograd

Lecture 8 -8888

Fei-Fei Li & Justin Johnson & Serena Yeung

A PyTorch Variable is a node in a

computational graph

x.data is a Tensor

x.grad is a Variable of gradients

(same shape as x.data)

x.grad.data is a Tensor of gradients

PyTorch: Autograd

Lecture 8 -8989

Fei-Fei Li & Justin Johnson & Serena Yeung

PyTorch Tensors and Variables

have the same API!

Variables remember how they were

created (for backprop)

PyTorch: Autograd

We will not want gradients

(of loss) with respect to data

Do want gradients with

respect to weights

Lecture 8 -9090

Fei-Fei Li & Justin Johnson & Serena Yeung

PyTorch: Autograd

Forward pass looks exactly
the same as the Tensor version, but

everything is a variable now

Lecture 8 -9191

Fei-Fei Li & Justin Johnson & Serena Yeung

PyTorch: Autograd

Compute gradient of loss
with respect to w1 and w2 (zero out

grads first)

Lecture 8 -9292

PyTorch: Autograd

Make gradient

step on weights

Lecture 8 -9393

Fei-Fei Li & Justin Johnson & Serena Yeung

PyTorch: New Autograd Functions

Define your own autograd

functions by writing forward

and backward for Tensors

(similar to modular layers in A2)

Lecture 8 -9494

Fei-Fei Li & Justin Johnson & Serena Yeung

PyTorch: New Autograd Functions

Can use our new autograd

function in the forward pass

Lecture 8 -9595

PyTorch: nn

Higher-level wrapper for

working with neural nets

Similar to Keras and friends …

but only one, and it’s good =)

Lecture 8 -9696

Fei-Fei Li & Justin Johnson & Serena Yeung

PyTorch: nn

Define our model as a

sequence of layers

nn also defines common loss

functions

Lecture 8 -9797

Fei-Fei Li & Justin Johnson & Serena Yeung

PyTorch: nn

Forward pass: feed data
to model, and prediction to loss

function

Lecture 8 -9898

PyTorch: nn

Backward pass:

compute all gradients

Lecture 8 -9999

Fei-Fei Li & Justin Johnson & Serena Yeung April 27, 2017
10

PyTorch: nn

Make gradient step on

each model parameter

Lecture 8 - 100
0

Fei-Fei Li & Justin Johnson & Serena Yeung April 27, 2017
10

PyTorch: optim

Use an optimizer for

different update rules

Lecture 8 - 101
1

PyTorch: optim

Update all parameters

after computing gradients

10
Lecture 8 - 102

Fei-Fei Li & Justin Johnson & Serena Yeung

2

PyTorch: nn
Define new Modules

10
Lecture 8 - 103

Fei-Fei Li & Justin Johnson & Serena Yeung

3

A PyTorch Module is a neural net

layer; it inputs and outputs Variables

Modules can contain weights (as

Variables) or other Modules

You can define your own Modules

using autograd!

PyTorch: nn

Define new Modules

Define our whole model

as a single Module

10
Lecture 8 - 104

Fei-Fei Li & Justin Johnson & Serena Yeung

4

PyTorch: nn

Define new Modules

Initializer sets up two

children (Modules can

contain modules)

10
Lecture 8 - 105

Fei-Fei Li & Justin Johnson & Serena Yeung

5

PyTorch: nn
Define new Modules

Define forward pass using

child modules and

autograd ops on Variables

No need to define

backward - autograd will

handle it

10
Lecture 8 - 106

Fei-Fei Li & Justin Johnson & Serena Yeung

6

PyTorch: nn
Define new Modules

Construct and train an

instance of our model

10
Lecture 8 - 107

Fei-Fei Li & Justin Johnson & Serena Yeung

7

PyTorch: DataLoaders

A DataLoader wraps a

Dataset and provides

minibatching, shuffling,

multithreading, for you

When you need to load

custom data, just write

your own Dataset class

10
Lecture 8 - 108

8

PyTorch: DataLoaders

Iterate over loader to form

minibatches

Loader gives Tensors so you

need to wrap in Variables

10
Lecture 8 - 109

9

PyTorch: Pretrained Models

Super easy to use pretrained models with

torchvision https://github.com/pytorch/vision

11
Lecture 8 - 110

0

https://github.com/pytorch/vision

Static vs Dynamic Graphs

Lecture 8 -4040

Fei-Fei Li & Justin Johnson & Serena Yeung April 27, 2017
12

0

Static vs Dynamic Graphs
TensorFlow: Build graph once, then

run many times (static)

PyTorch: Each forward pass defines

a new graph (dynamic)

Build

graph

Run each

iteration

New graph each iteration

Lecture 8 - 120

Static vs Dynamic: Optimization

With static graphs,

framework can

optimize the

graph for you

before it runs!

Conv

ReLU

Conv

ReLU

Conv

ReLU

The graph you wrote Equivalent graph with

fused operations

Conv+ReLU

Conv+ReLU

Conv+ReLU

April 27, 2017Fei-Fei Li & Justin Johnson & Serena Yeung

Static vs Dynamic: Serialization

Static

Once graph is built,

can serialize it and

run it without the code

that built the graph!

Dynamic

Graph building and

execution are intertwined,

so always need to keep

code around

Fei-Fei Li & Justin Johnson & Serena Yeung April 27, 2017
12

Static vs Dynamic: Conditional

y =
w1 * x

w2 * x

3

if z > 0

otherwise

Lecture 8 - 123

Fei-Fei Li & Justin Johnson & Serena Yeung April 27, 2017
12

Static vs Dynamic: Conditional

y =
w1 * x

w2 * x

if z > 0

otherwise

PyTorch: Normal Python

4
Lecture 8 - 124

Static vs Dynamic: Conditional

y =
w1 * x

w2 * x

if z > 0

otherwise

PyTorch: Normal Python

TensorFlow: Special TF

control flow operator!

12
Lecture 8 - 125

April 27, 2017

5

Static vs Dynamic: Loops

yt = (yt-1+ xt) * w
y0

x1 x2 x3

+ * + * +

w

*

12
Lecture 8 - 126

April 27, 2017Fei-Fei Li & Justin Johnson & Serena Yeung

6

Static vs Dynamic: Loops

y0

x1 x2 x3

+ * + * +

w

*

yt = (yt-1+ xt) * w

PyTorch: Normal Python

12
Lecture 8 - 127

April 27, 2017

7

Static vs Dynamic: Loops
TensorFlow: Special TF control flow

yt = (yt-1+ xt) * w

PyTorch: Normal Python

12
Lecture 8 - 128

8

Dynamic Graphs in TensorFlow

Lecture 8 - 93 April 27, 2017Fei-Fei Li & Justin Johnson & Serena Yeung

Looks et al, “Deep Learning with Dynamic Computation Graphs”, ICLR 2017

https://github.com/tensorflow/fold

TensorFlow Fold make dynamic

graphs easier in TensorFlow

through dynamic batching

https://github.com/tensorflow/fold

Tensorboard

Lecture 8 -4040

Visualizing
tensorflow
graphs

Visualizing tensorflow graphs

Visualizing
tensorflow
graphs

