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Distributed gradient descent

o Define loss(x) = > 1 >jcc, (X) +AQ(x), where fi(x) = I(x, u;, ;)
@ The gradient (in case of differentiable loss):

m
Vloss(x Z v( Z (X)) + AQ(x
j=1 i€G;

@ Compute V/i(x) = Z,-GC]_ V/;(x) on the j computer. Communicate
to central computer.
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Distributed gradient descent

@ Compute Vioss(x) = Z/’L VIi(x) + Q(x) at the central computer.

@ The gradient descent update: x*1 = xk — aVlIoss(x).

@ « chosen by a line search algorithm (distributed).

@ For non-differentiable loss functions, we can use distributed
sub-gradient descent algorithm.

o Slow for most practical problems.
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ADMM Precusors

Dual Ascent

Convex equality constrained problem:
mXin f(x)
subjectto: Ax =b
@ Lagrangian: L(x,y) = f(x) + yT(Ax — b)
@ Dual function: g(y) = infxL(x, y)
o
o

Dual problem: max, g(y)
Final solution: x* = argmin, L(x, y)
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ADMM Precusors

Dual Ascent

o Gradient descent for dual problem: yk*1 = yk 1 okV g(y¥)
® V,«g(y¥) = AX — b, where X = argmin, L(x, y)
@ Dual ascent algorithm:

X1 = argmin, L(x, y¥)
yk+1 _ yk + ak(AXk-H _ b)

@ Assumptions:

e L(x,y")is strictly convex. Else, the first step can have multiple
solutions.
e L(x,y*)is bounded below.
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ADMM Precusors

Dual Decomposition

@ Suppose f is separable:
f(x)=Ff(xq)+ -+ In(xn), X =(X1,...,XN)

@ Lis separable in x: L(x,y) = Ly(x,y) +--- + Ly(Xn, ) — y b,
where Li(x;,y) = fi(x;) + y T Aix;
@ x minimization splits into N separate problems:

K+1 : k
x; 1 = argmin, Li(x;, y*)
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ADMM Precusors

Dual Decomposition

@ Dual decomposition:

X[t = argmin, Li(x;, y*), i=1,...,N
N
Y =y 4o (Y Aixi - b)
i—1
@ Distributed solution:

e Scatter y* to individual nodes
e Compute x; in the i’ node (distributed step)
o Gather A;x; from the i" node

@ All drawbacks of dual ascent exist
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Method of Multipliers

@ Make dual ascent work under more general conditions
@ Use augmented Lagrangian:

L(x,y) = f(x) + yT(Ax — b) + 5] Ax — b3
@ Method of multipliers:

x**1 = argmin, L,(x, y¥)
yk+1 :yk —i—p(AXk+1 _ b)
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Methods of Multipliers

@ Optimality conditions (for differentiable f):
o Primal feasibility: Ax* —b =20
e Dual feasibility: Vf(x*) +ATy* =0

@ Since x**' minimizes L,(x, y¥)
0 = VL, (x*+1, y¥)
= V(M) + AT(yK + p(AXKE! — b))
V(xR 4+ ATy

@ Dual update y*+' = yk + p(Axk*t1 — b) makes (x**1, yk*1) dual
feasible

@ Primal feasibility is achieved in the limit: (Ax*t1 —b) — 0
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ADMM Derivations and Observations

Alternating direction method of multipliers

@ Problem with applying standard method of multipliers for
distributed optimization:

e there is no problem decomposition even if f is separable.
e due to square term 4||Ax — b]|3

Sourangshu Bhattacharya (IITKGP) ADMM

13/62



ADMM Derivations and Observations

Alternating direction method of multipliers

@ ADMM problem:

min f(x) +9(2)

subjectto: Ax + Bz=c¢
@ Lagrangian:

Ly(x,z,y) = f(X) +9(2) + yT(Ax + Bz — ¢) + §||Ax + Bz — ¢|2
o ADMM:
X1 = argmin, L,(x, z, y¥)

Z = argmin, L, (x*1, z, y%)
yk+1 — yk —l—p(AXk+1 + sz+1 - C)
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ADMM Derivations and Observations

Alternating direction method of multipliers

@ Problem with applying standard method of multipliers for
distributed optimization:

o there is no problem decomposition even if f is separable.
e due to square term 4|/ Ax — b||3

@ The above technique reduces to method of multipliers if we do
joint minimization of x and z

@ Since we split the joint x, z minimization step, the problem can be
decomposed.
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Derivations and Observations
ADMM Optimality conditions

@ Optimality conditions (differentiable case):
e Primal feasibility: Ax + Bz—c =0
e Dual feasibility: Vf(x) + ATy =0and Vg(z) + B'y =0

@ Since zK+! minimizes L,(x**1, z, y¥):
0= vg(zk—H) + BTyk —|—IOBT(AXk+1 + BZK—H _ C)
— Vg(zk+1) + BTyk—H

@ So, the dual variable update satisfies the second dual feasibility
constraint.

@ Primal feasibility and first dual feasibility are satisfied
asymptotically.
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ADMM Derivations and Observations

ADMM Optimality conditions

@ Primal residual: r* = Axk + Bzk — ¢
@ Since x**' minimizes L,(x, z, y¥):
0= vf(xk+1)+ATyk+pAT(AXk+1 + sz B )
= VIx) + AT(y* + prkt 4 pB(2F — 2KT)
Vf(Xk+1)—|-AT Kk+1 —|—pATB( k+1)
or,

pATB(Zk o Zk—H) — Vf(Xk+1) + ATyk-H

@ Hence, skt = pATB(zK — Zk+1) can be thought as dual residual.
P
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ADMM Derivations and Observations

Step size selection

@ Combine the linear and quadratic terms
e Primal feasibility: Ax + Bz—c =0
e Dual feasibility: Vf(x) + ATy =0and Vg(z) + B'y =0

@ Since zK+! minimizes L,(x**1, z, y¥):
0= vg(zk—H) + BTyk —|—IOBT(AXk+1 + BZK—H _ C)
— Vg(zk+1) + BTyk—H

@ So, the dual variable update satisfies the second dual feasibility
constraint.

@ Primal feasibility and first dual feasibility are satisfied
asymptotically.
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Derivations and Observations
ADMM with scaled dual variables

@ letr=Ax+Bz—-c
@ Lagrangian: L,(x, z,y) = f(x)+ 9(2) +yTr+ §||r||§
P P 1 1
yTr+ Gl = 5l + ylg - o lvIB
P P
= 2lir + ull3 - Zllul

@ where u = %y are scaled dual variables.

@ ADMM updates:
x*+1 = argmin, f(x) + gHAx + BzK — ¢ — uF|?
ZK1 = argmin,g(z) + gﬂAxk+1 + Bz —c— uk|?

Uk+1 _ Uk + (Axk—H + sz+1 . C)
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Convergence of ADMM

@ Assumption 1: Functions f : R” — R and g : R™ — R are closed,
proper and convex.

e Same as assuming epif = {(x,t) € R" x R|f(x) < t} is closed and
convex.

@ Assumption 2: The unaugmented Lagrangian Ly(x, y, z) has a
saddle point (xx, zx, y*):

Lo(X*,Z*,y) < Lo(X*,Z*,y*) < LO(X7 Zay*)
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Convergence of ADMM

@ Primal residual: r=Ax+ Bz —c¢
@ Optimal objective: p* = infy {f(x) + g(z2)|Ax + Bz = ¢}
@ Convergence results:

Primal residual convergence: r* — 0 as k — oo
Dual residual convergence: sk — 0 as k — oo
Obijective convergence: f(x) + g(z) — p* as k — o
Dual variable convergence: y* — y* as k — oo
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Convergence

Convergence proof

@ Let objective function: pk = f(x¥) + g(z¥)
@ Let (x*,z*, y*) be the saddle point and p* = f(x*) + g(z*)
@ Result 1:

@ Proof:

Lo(X*’Z*jy*) < LO(Xk+1,Zk+1,y*)
p* < pk+1 +y*Trk+1
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Convergence

Convergence proof

@ Result 2:
P = ot < ()T = (B2 - 2)T(—r + B2 - 27)

@ Proof:
xk+1 minimizes L,(x, z¥, y¥). Hence:

0= vf(xk+1) +ATyk +pAT(AXk+1 + sz+1 _ C)
_ Vf(Xk+1) +AT(yk+1 o pB(Zk-H o Zk))

Hence, x**1 minimizes f(x) + (y**1 — pB(zK+! — zK))T Ax.
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Convergence

Convergence proof

@ Proof (contd):
Similarly, ¢+ minimizes g(z) + (y**')" Bz.
Hence:

f(Xk+1) + (yk+1 _pB(Zk+1 _Zk))TAXk+1
< f(X*) + (yk+1 _pB(Zk+1 _ Zk))TAX*

and g(zkt") + ()T BzK+1 < g(z*) + ()T Bz*

Adding the above equations and rearranging, we get result 2.
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Convergence

Convergence proof

@ Define a Lyapunov function, V:
1 * *
vk = ;Hyk —y*l5+ pIB(Z - 2%)II5
@ Result 3:
VIHT < VK — pl| 15 — pl| B(Z*TT = 2413

@ Proof:
Adding results 1 and 2, and multiplying by 2:

2(yk+1 . y*)Trk—H - zp(B(zk—H o Zk))Trk—H
—l—2p(B(Zk+1 - Zk))TB(Zk-H —Z*) < 0
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Convergence

Convergence proof

@ Proof (contd):
Substituting y¥*1 = y¥ + prkt1 and rearranging, the first term
becomes:

Tkt 2 K 2 k+12

;(Hy T =ylE =y = ylE) + el

Similarly, the remaining terms can be written as:

plr< = B2 — 2|5 + p(IB(ZK = 27)|5 — 11B(Z" = 2°)[13) — plIr+"|13

Hence we get:

K vk K k K
VE— VI > pl| 4T — B(2MHT — 213
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Convergence

Convergence proof

@ Proof (contd):
It suffices to show that p(rkt1)T(B(zK+t1 — ZK)) <
Using the facts that z<*+1 minimizes g(z) + (y<+1 )TBz and zk
minimizes g(z) + (y*)' Bz:

g(zk'H) + (yk+1)Tsz+1 < g(Zk) + (yk+1)TBZk
and
9(z) + (y*)"BzK < g(2**) + (y*)T B2+
Adding, we get result 3.
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Convergence

Convergence proof

@ Summing result 3 over k, we get:

o0
k+1 12 k1 kyj2
p Y (IFHE+ B2 = 29)IB) < Vo
k=0

Hence, ||r¥||> — 0 and ||s¥||» — 0 as k — o
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Stopping criteria

@ Stop when primal and dual residuals small:
|2 < e and ||s]lp < e

Hence, ||r¥||2 — 0 and ||sX||o — 0 as k — oo
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Applications

Observations

@ x- update requires solving an optimization problem
, P
min f(x) + 5| Ax — VI3

with, v = BzK — ¢ + uk
@ Similarly for z-update.
@ Sometimes has a closed form.
@ ADMM is a meta optimization algorithm.
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Applications

Decomposition

@ If f is separable:
f(x) = H(xq) + -+ In(xn), X = (X1, Xn)

@ Ais conformably block separable; i.e. AT Ais block diagonal.
@ Then, x-update splits into N parallel updates of x;
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Applications

Proximal Operator

@ x-update when A=l
x* = argmin, (f(x) + 5 1x — v = prox;,,(v)
@ Some special cases:

f = I¢ (Indicator fn of C) , x™ = M¢(v) (projecction on to C)
f=AlLll1.x" = 8a(v)
P

where, Sy(v) = (v—a); — (—v —a)4.

Sourangshu Bhattacharya (IITKGP) ADMM 32/62



Applications

Consensus Optimization

@ Problem:

@ ADMM form:

min 1 fi(xi)
=

st.xi—z=0,i=1,....N

@ Augmented lagrangian:

N

Lol 2.Y) = 3 (600) 47 (5 = 2) + 2lx; — |3)
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Applications

Consensus Optimization

@ ADMM algorithm:

X1 = argmin, (f(x) + v (x — 2¥) + £ 1x; — 2¥[3)

N
1 1
K+l _ k41 k
=N ;(Xi + ;y,- )
Yt =yl 4 p(xf T = 2

@ Final solution is zX.
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Applications

Consensus Optimization

@ z-update can be written as:

1o

k
+1 y
p

Z — )—(k—i—‘l +

@ Averaging the y-updates:

}—/k+1 — }—/k +p()—(k+1 _Zk+1)
@ Substituting first into second: y**' = 0. Hence z¥ = xk.
@ Revised algorithm:

X[ = argmin, (fi(x;) + yfT (x; — X*) + g”Xi — x¥|5)

k k <
Y = y/‘k + p(X; 1 XKH)

@ Final solution is zX.
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Applications

Loss minimization

@ Problem:
min I(Ax — b) + r(x)
@ Partition A and b by rows:
Aq by
A=| o [.o=] 1 |,
An bn
where, A; € R™>*M gnd b; € R™

@ ADMM formulation:
N

rgjgz;/i(AiXi—bi)Jrf(Z)
=
st:xi—z=0,i=1,...,N
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Applications

Loss minimization

@ ADMM formulation:

N
min 21: li(Aix; — b;) 4 r(2)
j=

st:xi—z=0,i=1,....N

@ ADMM solution:

- p
Xf T = argmin, (l(Aix; — bj) + Slxi— Z 4+ uk|3)

Ut = uf X - 2R
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Fully distributed SVM

@ SVM optimization problem'

m'n*”WH + szgjn

j=1 n=1
st yn(WiXp+b) >1—¢gpn, Vjedn=1,.. N,
§n>0,Ved,n=1,... N,

@ Node j has a copy of w;, b;. Distributed formulation:

W 3 Z w12 + JCZ Z Ein

j=1 n=1
s.t..y,-,,(vnqx,-,,+b)21—§/,,, Viedn=1,... N
§n=>0,vjedn=1,....N
W = wj, Vj,iEBj
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Fully distributed SVM
e Using v; = [w/ b]", X; = [[1,..., xn]"1j] and
Y; = diag([yj1, - - -, yin)):
1
min *Z Vi) +JCZZ§I,,
{V/ f/nw/l}z j 1 n=1
t.: Y/-X/-vj21—§,-, vjed
§>0,ved
Vi = wji, Vj = wj, V), i € B;

@ Surrogate augmented Lagrangian:

<

L{vi} A&} Awi} {ii}) = Z v;) +JCZZ§n

j=1 Jj=1 n=1

+ ZZ(O‘W — wj) + afo(Vi — wj))
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Fully distributed SVM

@ ADMM based algorithm:

(v ey = argming, g0 L({v;} (G {wf} {afi})
{wf™"} = argmin,, LY (G {wih {adid)

1 _ t+1 t+1
i = aji + n(v;m —wt)
t+1 T-H t+1
aji2 ale + 77( V,' )
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Weighted Parameter Averaging

Support Vector Machines

@ Training dataset: S = {(x;,y;):i=1,---, ML,
yi€ {—1,+1},x; € R9}.

@ Predictor function: y; = sign(w”x;)

@ Linear SVM problem:

min AJ|wl|3 + — Zloss (X, yi)),

@ Hinge loss: loss(w; (x;, ¥;)) = max(0,1 — ywTx;)
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Distributed Support Vector Machines

@ Training dataset partitioned into M partitions (Sp,, m=1,..., M).
@ Each partition has L datapoints: Sy = {(Xmi, Y1)}, 1 =1,..., L.
@ Each partition can be processed locally on a single computer.

@ Distributed SVM training problem [?]:

M L
vrpn:g Z IZ: /OSS(Wm; (Xmlvym/)) + r(z)
m=1 /=1

stwp,—z=0m=1,--- M, I=1,... L
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Weighted Parameter Averaging

Parameter Averaging

@ Parameter averaging, also called “mixture weights” proposed in
[?], for logistic regression.

@ Results hold true for SVMs with suitable sub-derivative.
@ Locally learn SVM on Sp;:

Wy = argmln Z 10SS(W; Xty Yimy) + A|W|2, m=1,...,M

@ The final SVM parameter is given by:

M
Wpy = M Z
m:
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Weighted Parameter Averaging

Problem with Parameter Averaging

PA with varying number of partitions - Toy dataset.

60

— 1 partition

— 10 partitions
40 30 partitions ||
—— 50 partitions
100 partitions
20
0
-20
—40
-60 -
-40 -30 30 40
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Weighted Parameter Averaging

@ Final hypothesis is a weighted sum of the parameters W,.

M
W = Z BmWm
m=1

@ Also proposed in [?].
@ Howtoget By ?
@ Notation: 8 = [B1,---, Aum]", W = [Wy,--- , Wy

w=Wg3
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Weighted Parameter Averaging

@ Find the optimal set of weights 8 which attains the lowest
regularized hinge loss:

M L
m|n )\HW,@HZ —|- — Z me/
m 1i=1

subject to: ym;(BTW Xmi) > 1 —=&mi, Vi,m
Emi >0, Ym=1,... M, i=1,... L

e W is a pre-computed parameter.
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Dual Weighted Parameter Averaging

@ Lagrangian:
1
‘C(B»gmhamiaﬂmi) = )‘HWIBHZ + ML ;fmi
+ Z ami(Ymi(IBTWTXmi) —1+&mi) — Z Hmi&mi
m,i j
@ Differentiating w.r.t. 3 and equating to zero:

1

8=l

WTW Z Oéml}/mlw xm/)

m/
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Dual Weighted Parameter Averaging

@ Similarly, differentiating w.r.t. £,,; and equating to zero:

1
< < —
0 am,_ML

@ Substituting 3 in L:

min £(cx Zam,— 4)\ZZam,am/,ym,ym/ (XL W(WTW)~"WTx,, )

m,i m’,j

subjectto:Ogam,-gﬁ Viel,---,LLme1,--- M

@ SVM with x,,;; projected using symmetric projection
H=WW'W) w7,
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Distributed Weighted Parameter Averaging

@ Distributed version of primal weighted parameter averaging:

M L

1 )
5‘;'7% ML Z /OSS( Wm; Xmi, le) + I’(,@)

m=1 /=1

S‘t 'Ym_ﬁ:o’ m:1,,M7

e r(8) = A\|Wg|]2, vm weights for m'" computer, 3 consensus
weight.
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Distributed Weighted Parameter Averaging

@ Distributed algorithm using ADMM:

= argmin(loss(A) + (p/2)lly — B+ ugl3)

g+ = argmin(r(8) + (Mp/2)|18 - T —u3)
u’,§,+1 _ Ufn Jr,Y;<n+1 _ gk+1,

@ up, are the scaled Lagrange multipliers, 5 = 1, Z,",”,:1 Ym and
O 1yM
U= m1Un
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Toy Dataset - PA and WPA

PA (left) and WPA (right) with varying number of partitions - Toy

60 60
1 partition 1 partition
10 partitions 10 partitions
4 30 partitions 40 30 partitions
——— 50 partitions ——— 50 partitions
100 partitions 100 partitions
20 20
0 0
-20 -20
-40 -40
60 -60
Z40 30 -20 -10 0 10 20 30 40 240 -30 20 30 40
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Toy Dataset - PA and WPA

Accuracy of PA and WPA with varying number of partitions - Toy

101

100

g 9
£
)
3

< 98

97

96
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Toy Dataset - PA and WPA

Bias (E[||w — w*||]) of PA, WPA and DSVM with varying number of
partitions - Toy dataset.

Sample size | Mean bias(PA) | Mean bias(DWPA) | Mean bias(DSVM)
3000 0.868332 0.260716 0.307931
6000 0.807217 0.063649 0.168727
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Weighted Parameter Averaging Experimental Results

Real World Datasets

Epsilon (2000 features, 6000 datapoints) test set accuracy with varying
number of partitions.

100

PA ————

95 DSVM -
DWPA - e

90
85
80
75
70
65
60

Test Accuracy

0 50 100 150 200
Partition Size
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Weighted Parameter Averaging Experimental Results

Real World Datasets

Gisette (5000 features, 6000 datapoints) test set accuracy with varying
number of partitions.

100

=y
£
=
3
<«
g
=
85
PA ———
DSVM -
%0 DWPA - O
0 50 100 150 200
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Real World Datasets

Real-sim (20000 features, 3000 datapoints) test set accuracy with
varying number of partitions.

100

PA ————

Test Accuracy

80
0 50 100 150 200

Partition Size
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Real World Datasets

Convergence of test accuracy with iterations (200 partitions).

100
Ny .
R =
5 ....... ""/
g M=
g 60 DSVMace
DWPAacc
50 PAuce
DSVM
° PA -
50 100 150 200 250 300 350 400 450 500
Iterations
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Weighted Parameter Averaging Experimental Results

Real World Datasets

Convergence of primal residual with iterations (200 partitions).

0.8
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Conclusions

@ Good approximation to training SVM and other classifiers on Big
data platforms is an open problem - tradeoff between computation
and quality.

@ Training SVM in a projected space can lead to efficient and
accurate algorithms and bounds on stability w.r.t. generalization
error.

@ Future directions - applicability to:

o Kernels methods.
o Other supervised learning algorithms.
e Unsupervised learning ??
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Thank you !

Questions ?
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