
CS60021: Scalable Data Mining

Similarity Search and Hashing

Sourangshu Bhattacharya



MULTI-PROBE LSH



Locality Sensitive Hashing

Given input data, radius r, approx factor c and 
confident 𝛿
Output: if there is any point at distance ≤ 𝑟 then w.p.
1 − 𝛿 return one at distance ≤ 𝑐𝑟
Algo: Choose 𝑘, 𝐿 .
do L times

iid hash functions ∶ h78 … . h7:
Create hash table 𝐻< by putting each 𝑥 in bucket 

𝐻< 𝑥 = ℎ<8 𝑥 , …ℎ<@ 𝑥
Store non-empty buckets in normal hash table

3

Picture courtesy Slaney et al.



Locality Sensitive Hashing

Given input data, radius r, approx factor c and 
confident 𝛿
Output: if there is any point at distance ≤ 𝑟 then w.p.
1 − 𝛿 return one at distance ≤ 𝑐𝑟

Query: Find out all points in buckets 𝐻8 𝑞 … .𝐻B(𝑞)
and return ones that are ≤ 𝑐𝑟

4

Picture courtesy Slaney et al.



Drawbacks

• Trading space with time, strongly super-linear 
space 
– Even in practice, typically 5-20 times more memory than dataset itself

• Space-time tradeoff mostly practical effective 
for medium-high dimensions, dense vectors
– recent advances in ML about dense embeddings

5



Probing multiple times

• Idea: Can we reduce space while not affecting 
query time by too much?
– need to hit buckets that have high probability of the containing the nearest 

neighbour

6



Entropy based LSH

• Assume that we know 𝑅 𝑝, 𝑞 = distance 
from query 𝑞 to nearest neighbour 𝑝
– Buckets are a random partition of the data
– The success probability of a bucket (i.e. of containing 𝑝) depends only 

on 𝑅 𝑝, 𝑞
– Ideally, we can sort the buckets by this probability 

7



Entropy based LSH

• Elegant way to sample from the success 
probability distribution 
– Perturb the query point repeatedly and probe
– Buckets that have high probability should come up often
– Theoretical guarantee

8

𝑞

[Panigrahy’ 06]



Multi-probe LSH

• Look at neighbouring buckets!
• Consider LSH for L2

9

ℎG,H 𝑞 =
𝑞 ⋅ 𝑣 + 𝑏

𝑤



Multi-probe LSH
• Suppose 𝑘 = 3
• 𝐻8 𝑞 = (5, 8, 3)
• We consider buckets that differ in one position, two positions, … 

10



Formalizing

• Δ ∈ −1,0, +1 @ be a “perturbation” vector
– E.g. Δ = (−1, 0, +1,+1, 0… .−1)
– We get a new hash bucket by doing 𝐻 𝑞 + Δ
– Say Δ has at most 𝑆 nonzeros
– Number of possible Δ is: 

• Is there a natural way to order these buckets for 
searching?

11



Success Probability Estimation

𝑓< 𝑞 = 𝑞 ⋅ 𝑣< + 𝑏< be	the	projection	
of	q	

𝑥< +1 𝑎𝑛𝑑 𝑥<(−1) be the distance of 
the projection to the two boundaries

𝑓< 𝑞 − 𝑓< 𝑝 ∼ 𝑁 0, 𝐶 𝑝 − 𝑞 by 
property of normal distribution

12

Image from Lv et al.



Success Probability Estimation

𝑥< +1 𝑎𝑛𝑑 𝑥<(−1) be the distance of the 
projection to the two boundaries

𝑓< 𝑞 − 𝑓< 𝑝 ∼ 𝑁 0, 𝐶 𝑝 − 𝑞 by 
property of normal distribution

Pr ℎ< 𝑝 = ℎ< 𝑞 + 1 ≈ exp(−𝐶𝑥< +1 f)

13

Image from Lv et al.



Ordering buckets

• If Δ = 𝛿8 …𝛿@ then
Pr 𝐻 𝑝 = 𝐻 𝑞 + Δ = Pr∏ ℎ< 𝑞 = ℎ< 𝑞 + 𝛿<

Ex: Δ = +1, 0, −1 , 

14

≈hexp −𝐶𝑥< 𝛿< f = exp −𝐶i𝑥< 𝛿< f



Ordering buckets

• Define 𝑠𝑐𝑜𝑟𝑒 Δ = ∑𝑥< 𝛿< f

• Lower the score, higher the probability of 
𝑝 being in the bucket 

15



Ordering buckets

• Define 𝑠𝑐𝑜𝑟𝑒 Δ = ∑𝑥< 𝛿< f

• Lower the score, higher the probability of 
𝑝 being in the bucket 

• Order the buckets by the score and search 
them in this order

16



Query directed ordering
• When a query 𝑞 arrives

– Calculate 𝐻(𝑞)
– Calculate { 𝑥< +1 f, 𝑥< −1 f, 𝑖 = 1…𝑘}
– Sort

17



Query directed ordering

• When a query 𝑞 arrives
– Calculate 𝐻(𝑞)
– Calculate { 𝑥< +1 f, 𝑥< −1 f, 𝑖 = 1…𝑘}
– Sort (call these as 𝑧8 ≤ 𝑧f … ≤ 𝑧f@ )

• Start with 𝐴 = {1}
• Repeatedly do either shift or expand

– shift replace max(𝐴) by 1+max(A)
– expand adds 1+max(A) to A

18



Multiprobe LSH

• Using a min-heap at query time we can use 
the shift and expand operations to explore all 
buckets in order
– Can optimize further

• In practice, will stop after a budget 

19



Experiments

20



Summary

• While LSH is a powerful technique, there are few areas of concern, memory usage 
among them

• Entropy and Multi-probe LSH are elegant solutions that are useful in practice
– Shown to be useful in practice, reduce space usage by a factor 
– also form part of the state-of-art LSH system

• Intuition based on idea of probing multiple buckets in a query-dependent manner

21



22

References:

• Primary references for this lecture
• Multi-Probe LSH: Efficient Indexing for High Dimensional Similarity Search. By Qin 

Lv, William Josephson, Zhe Wang, Moses Charikar, Kai Li, VLDB 2007

• R. Panigrahy. Entropy based nearest neighbor search in high dimensions. In Proc. of 
ACM-SIAM Symposium on Discrete Algorithms(SODA), 2006.



LEARNING TO HASH



Locality Sensitive Hashing

Given input data, radius r, approx factor c and 
confident 𝛿
Output: if there is any point at distance ≤ 𝑟 then w.p.
1 − 𝛿 return one at distance ≤ 𝑐𝑟
Algo: Choose 𝑘, 𝐿 .
do L times

iid hash functions ∶ h78 … . h7:
Create hash table 𝐻< by putting each 𝑥 in bucket 

𝐻< 𝑥 = ℎ<8 𝑥 , …ℎ<@ 𝑥
Store non-empty buckets in normal hash table

24

Picture courtesy Slaney et al.



Issues
• Parameters k, L need to be tuned for each domain

• Random directions are meant to create a random partitioning of the 
dataset

• While useful to guard against “worst case datasets”, we do not exploit the 
dataset structure

25



Hashing as binary codes

• Assume points are in Euclidean space

• How can we get binary vectors so that 
Hamming distance approximates Euclidean 
distance

26



Properties of a binary code

• Should be easily computable

• Should preserve distances approximately

• Should have small number of bits
– the bits should be independent and unbiased

27



Optimization

• 𝑊<u =	similarity	between	𝑖 and	𝑗

– Say	𝑊<u = exp −
{| }{~

�

�

• 𝑦< = codeword for point 𝑖

• 𝑦< − 𝑦u
f

also equals Hamming 𝑖, 𝑗

28



Learning codes

• Average hamming distance = ∑<u𝑊<u 𝑦< − 𝑦u
f

• 𝑦< ∈ −1,+1 @

• Each bit should be unbiased:  ∑< 𝑦< = 0

• Bits should be uncorrelated  ∑< 𝑦<𝑦<� = 𝐼

29



Casting as optimization problem

• Can we solve : minimize ∑<u𝑊<u 𝑦< − 𝑦u
f

• subject to 
– 𝑦< ∈ −1,+1 @

– ∑< 𝑦< = 0
– ∑< 𝑦<𝑦<� = 𝐼

30

[Waiss et al.]



Hardness

• Unfortunately, no!, even for single bit

• Graph partitioning problem: For graph G 
partition V(G) into two sets 𝐴 and 𝐵 such that 
|𝐴| = |𝐵| and 

31

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 i
<∈�,u∈�

𝑊<u



Spectral Relaxation

• 𝑌 = 𝑛×𝑘 code matrix
• Diagonal 𝐷,  𝐷<< = ∑u𝑊<u

• minimize ∑<u𝑊<u 𝑦< − 𝑦u
f

= 𝑡𝑟𝑎𝑐𝑒 𝑌� 𝐷 −𝑊 𝑌
– 𝑌� ⋅ 1 = 0
– 𝑌� 𝑌 = 𝐼
– Drop the constraint that 𝑌 are in {−1,+1}

32



Spectral codes

• The above problem is solved by  𝑌 = smallest 
– k eigenvectors of 𝐷 −𝑊
– After dropping the one with value 0

• To get codes,
– We could threshold eigenvectors, but then hard to extend it for query

33



Eigenvectors

• Assume that the data is coming from some 
distribution in 𝑅�
– But estimating this distribution is hard also
– We could try to interpolate the eigenvectors to query points, under 

above assumptions, but is computationally expensive (Nystrom 
extension)

34



Eigenvectors

• Assume that the data is coming from some 
distribution in 𝑅�
– But estimating this distribution is hard also
– We could try to interpolate the eigenvectors to query points, under above 

assumptions, but is computationally expensive (Nystrom extension)

• Assume data distribution is product of uniform 
distributions
– Use PCA to find the axes

35



Eigenfunctions
• Take limit of eigenvectors as 𝑛 → ∞, and consider the “normalized” 

similarity matrix (Laplacian)
• Analytical form of Eigenfunctions exists for certain distributions (uniform, 

Gaussian)
• For uniform

• Constant time calculation for any new point
36

[Image from Waiss et al]



Algorithm
Input: Data 𝑥< , target dimensionality 𝑘

37



Algorithm
Create top 𝑘 PCA of 𝐷 −𝑊

Gives us top 𝑘 axes
Find the 𝑎<, 𝑏< for each axes
and create 𝜙8 𝑥 …𝜙@(𝑥) for each direction

38



Algorithm

Create top 𝑘 PCA of 𝐷 −𝑊

Gives us top 𝑘 axes
Find the 𝑎<, 𝑏< for each axes
and create 𝜙<8 𝑥 …𝜙<@(𝑥)
and 𝜆<8 …𝜆<@ for each direction

Total 𝑑𝑘 eigenvaluesà sort and take the top k
eigenvalues and corresponding functions

39



Algorithm
Threshold chosen 
Eigenfunctions

Empirical observation:
bit codes
seem robust to the 
uniform assumption

40



Results

• Shown to have better properties than naïve LSH on 
large datasets 

41

[Image from Waiss et al]



Summary
• Large literature on learning the hash codes rather than use random 

projection
– Liu, Wei, Jun Wang, Rongrong Ji, Yu-Gang Jiang, and Shih-Fu Chang. 

"Supervised hashing with kernels." IEEE CVPR 2012.
– Muja, Marius, and David G. Lowe. "Scalable nearest neighbor algorithms 

for high dimensional data." IEEE TPAMI (2014): 2227-2240.
– Wang, Jingdong, Heng Tao Shen, Jingkuan Song, and Jianqiu Ji. "Hashing 

for similarity search: A survey." arXiv preprint arXiv:1408.2927 (2014).

• Unfortunately, theoretical guarantees are not available for such data-
dependent version
– time to calculate projections might also be higher.

42



43

References:

• Primary references for this lecture
• Spectral Hashing, Yair Weiss, Antonio Torralba and Rob Fergus. [NIPS], 2008

Anirban Dasgupta
Computer Science and Engg.


