CS60021: Scalable Data Mining

Similarity Search and Hashing

Sourangshu Bhattacharya

MULTI-PROBE LSH

Locality Sensitive Hashing

Given input data, radius r, approx factor c and confident δ

<u>Output</u>: if there is any point at distance $\leq r$ then w.p.

 $1 - \delta$ return one at distance $\leq cr$

<u>Algo:</u> Choose (k, L).

do L times

iid hash functions : $\{h_{i1} \dots h_{ik}\}$

Create hash table H_i by putting each x in bucket $H_i(x) = (h_{i1}(x), \dots h_{ik}(x))$

Store non-empty buckets in normal hash table

Picture courtesy Slaney et al.

Locality Sensitive Hashing

Given input data, radius r, approx factor c and confident δ

<u>Output:</u> if there is any point at distance $\leq r$ then w.p. $1 - \delta$ return one at distance $\leq cr$

<u>Query</u>: Find out all points in buckets $H_1(q) \dots H_L(q)$ and return ones that are $\leq cr$

Picture courtesy Slaney et al.

Drawbacks

- Trading space with time, strongly super-linear space
 - Even in practice, typically 5-20 times more memory than dataset itself
- Space-time tradeoff mostly practical effective for medium-high dimensions, dense vectors
 - recent advances in ML about dense embeddings

Probing multiple times

- Idea: Can we reduce space while not affecting query time by too much?
 - need to hit buckets that have high probability of the containing the nearest neighbour

Entropy based LSH

- Assume that we know R(p,q) = distance from query q to nearest neighbour p
 - Buckets are a random partition of the data
 - The success probability of a bucket (i.e. of containing p) depends only on R(p,q)
 - Ideally, we can sort the buckets by this probability

Entropy based LSH

[Panigrahy' 06]

q

- Elegant way to sample from the success probability distribution
 - Perturb the query point repeatedly and probe
 - Buckets that have high probability should come up often
 - Theoretical guarantee

Multi-probe LSH

- Look at neighbouring buckets!
- Consider LSH for L2 $h_{v,b}(q) = \left\lfloor \frac{q \cdot v + b}{w} \right\rfloor$

Multi-probe LSH

- Suppose k = 3
- $H_1(q) = (5, 8, 3)$
- We consider buckets that differ in one position, two positions, ...

Formalizing

• $\Delta \in \{-1,0,+1\}^k$ be a "perturbation" vector

- E.g. $\Delta = (-1, 0, +1, +1, 0 \dots -1)$
- We get a new hash bucket by doing $H(q) + \Delta$
- Say Δ has at most S nonzeros
- Number of possible Δ is:
- Is there a natural way to order these buckets for searching?

Success Probability Estimation

Image from Lv et al.

 $f_i(q) = q \cdot v_i + b_i$ be the projection of q

 $x_i(+1)$ and $x_i(-1)$ be the distance of the projection to the two boundaries

 $f_i(q) - f_i(p) \sim N(0, C|p - q|)$ by property of normal distribution

Success Probability Estimation

Image from Lv et al.

 $x_i(+1)$ and $x_i(-1)$ be the distance of the projection to the two boundaries

 $f_i(q) - f_i(p) \sim N(0, C|p - q|)$ by property of normal distribution

 $\Pr[h_i(p) = h_i(q) + 1] \approx \exp(-Cx_i(+1)^2)$

Ordering buckets

• If
$$\Delta = (\delta_1 \dots \delta_k)$$
 then
 $\Pr[H(p) = H(q) + \Delta] = \Pr[h_i(q) = h_i(q) + \delta_i]$

$$\approx \prod \exp(-Cx_i(\delta_i)^2) = \exp\left(-C\sum x_i(\delta_i)^2\right)$$

 $Ex: \Delta = (+1, 0, -1),$

Ordering buckets

- Define $score(\Delta) = \sum x_i(\delta_i)^2$
- Lower the score, higher the probability of p being in the bucket

Ordering buckets

- Define $score(\Delta) = \sum x_i (\delta_i)^2$
- Lower the score, higher the probability of p being in the bucket
- Order the buckets by the score and search them in this order

Query directed ordering

• When a query *q* arrives

- Calculate H(q)
- Calculate { $x_i(+1)^2, x_i(-1)^2, i = 1 \dots k$ }
- Sort

Query directed ordering

• When a query q arrives

- Calculate H(q)
- Calculate { $x_i(+1)^2, x_i(-1)^2, i = 1 \dots k$ }
- Sort (call these as $z_1 \leq z_2 \dots \leq z_{2k}$)
- Start with $A = \{1\}$
- - *shift* replace max(A) by 1+max(A)
 - expand adds 1+max(A) to A

Multiprobe LSH

- Using a min-heap at query time we can use the shift and expand operations to explore all buckets in order
 - Can optimize further
- In practice, will stop after a budget

Experiments

Summary

- While LSH is a powerful technique, there are few areas of concern, memory usage among them
- Entropy and Multi-probe LSH are elegant solutions that are useful in practice
 - Shown to be useful in practice, reduce space usage by a factor
 - also form part of the state-of-art LSH system
- Intuition based on idea of probing multiple buckets in a query-dependent manner

References:

- Primary references for this lecture
 - Multi-Probe LSH: Efficient Indexing for High Dimensional Similarity Search. By Qin Lv, William Josephson, Zhe Wang, Moses Charikar, Kai Li, VLDB 2007
 - R. Panigrahy. Entropy based nearest neighbor search in high dimensions. In Proc. of ACM-SIAM Symposium on Discrete Algorithms(SODA), 2006.

LEARNING TO HASH

Locality Sensitive Hashing

Given input data, radius r, approx factor c and confident δ

<u>Output</u>: if there is any point at distance $\leq r$ then w.p.

 $1 - \delta$ return one at distance $\leq cr$

<u>Algo:</u> Choose (k, L).

do L times

iid hash functions : $\{h_{i1} \dots h_{ik}\}$

Create hash table H_i by putting each x in bucket $H_i(x) = (h_{i1}(x), \dots h_{ik}(x))$

Store non-empty buckets in normal hash table

Picture courtesy Slaney et al.

Issues

- Parameters k, L need to be tuned for each domain
- Random directions are meant to create a random partitioning of the dataset
- While useful to guard against "worst case datasets", we do not exploit the dataset structure

Hashing as binary codes

• Assume points are in Euclidean space

 How can we get binary vectors so that Hamming distance approximates Euclidean distance

Properties of a binary code

• Should be easily computable

• Should preserve distances approximately

- Should have small number of bits
 - the bits should be independent and unbiased

Optimization

• W_{ij} = similarity between *i* and *j*

$$-\operatorname{Say} W_{ij} = \exp\left(-\frac{|x_i - x_j|^2}{s}\right)$$

- y_i = codeword for point *i*
- $|y_i y_j|^2$ also equals Hamming(i, j)

Learning codes

• Average hamming distance = $\sum_{ij} W_{ij} |y_i - y_j|^2$

- $y_i \in \{-1, +1\}^k$
- Each bit should be unbiased: $\sum_i y_i = 0$

• Bits should be uncorrelated $\sum_i y_i y_i^t = I$

Casting as optimization problem [Waiss et al.]

- Can we solve : minimize $\sum_{ij} W_{ij} |y_i y_j|^2$
- subject to

$$-y_i \in \{-1, +1\}^k$$
$$-\sum_i y_i = 0$$
$$-\sum_i y_i y_i^t = I$$

Hardness

• Unfortunately, no!, even for single bit

• Graph partitioning problem: For graph G partition V(G) into two sets A and B such that |A| = |B| and minimize $\sum_{i \in A, j \in B} W_{ij}$

Spectral Relaxation

- $Y = n \times k$ code matrix
- Diagonal *D*, $D_{ii} = \sum_{j} W_{ij}$
- minimize $\sum_{ij} W_{ij} |y_i y_j|^2 = trace(Y^t(D W)Y)$

$$-Y^t \cdot 1 = 0$$

- $-Y^t Y = I$
- Drop the constraint that Y are in $\{-1, +1\}$

Spectral codes

- The above problem is solved by Y = smallest
 - -k eigenvectors of D W
 - After dropping the one with value 0

- To get codes,
 - We could threshold eigenvectors, but then hard to extend it for query

Eigenvectors

- Assume that the data is coming from some distribution in R^d
 - But estimating this distribution is hard also
 - We could try to interpolate the eigenvectors to query points, under above assumptions, but is computationally expensive (Nystrom extension)

Eigenvectors

- Assume that the data is coming from some distribution in R^d
 - But estimating this distribution is hard also
 - We could try to interpolate the eigenvectors to query points, under above assumptions, but is computationally expensive (Nystrom extension)
- Assume data distribution is product of uniform distributions
 - Use PCA to find the axes

Eigenfunctions

- Take limit of eigenvectors as $n \to \infty$, and consider the "normalized" similarity matrix (Laplacian)
- Analytical form of Eigenfunctions exists for certain distributions (uniform, Gaussian)
- For uniform

$$\Phi_{k}(x) = \sin(\frac{\pi}{2} + \frac{k\pi}{b-a}x)$$

$$\lambda_{k} = 1 - e^{-\frac{\epsilon^{2}}{2}|\frac{k\pi}{b-a}|^{2}}$$

• Constant time calculation for any new point

36

[Image from Waiss et al]

Input: Data $\{x_i\}$, target dimensionality k

Create top k PCA of D - W

Gives us top k axes Find the $[a_i, b_i]$ for each axes and create $\phi_1(x) \dots \phi_k(x)$ for each direction

Create top k PCA of D - W

Gives us top k axes Find the $[a_i, b_i]$ for each axes and create $\phi_{i1}(x) \dots \phi_{ik}(x)$ and $\lambda_{i1} \dots \lambda_{ik}$ for each direction

Total dk eigenvalues \rightarrow sort and take the top k eigenvalues and corresponding functions

Threshold chosen Eigenfunctions

Empirical observation: bit codes seem robust to the uniform assumption

Results

 Shown to have better properties than naïve LSH on large datasets

Summary

- Large literature on learning the hash codes rather than use random projection
 - Liu, Wei, Jun Wang, Rongrong Ji, Yu-Gang Jiang, and Shih-Fu Chang.
 "Supervised hashing with kernels." *IEEE CVPR 2012.*
 - Muja, Marius, and David G. Lowe. "Scalable nearest neighbor algorithms for high dimensional data." *IEEE TPAMI (2014): 2227-2240*.
 - Wang, Jingdong, Heng Tao Shen, Jingkuan Song, and Jianqiu Ji. "Hashing for similarity search: A survey." arXiv preprint arXiv:1408.2927 (2014).
- Unfortunately, theoretical guarantees are not available for such datadependent version
 - time to calculate projections might also be higher.

References:

- Primary references for this lecture
 - Spectral Hashing, Yair Weiss, Antonio Torralba and Rob Fergus. [*NIPS*], 2008

Anirban Dasgupta Computer Science and Engg.