CS60021: Scalable Data Mining

Similarity Search and Hashing

MULTI-PROBE LSH

Locality Sensitive Hashing

K projections L tables Given input data, radius r, approx factor c and

Hash lm\\ m:&fges confident §
tf:;r::ieTs disfavnce Output: if there is any point at distance < r then w.p.
1 — & return one at distance < cr

Results

Algo: Choose (k, L).
do L times

iid hash functions : {hj; hy}

Create hash table H; by putting each x in bucket
H;(x) = (hiz (), .. hy (x))

Store non-empty buckets in normal hash table
Picture courtesy Slaney et al.

Locality Sensitive Hashing

K projections L tables Given input data, radius r, approx factor c and

Hash lm\\ m:tf’cf;es confident §
;:;ie':s disfavnce Output: if there is any point at distance < r then w.p.
1 — & return one at distance < cr

Results

Query: Find out all points in buckets H;(q) H; (q)
and return ones that are < cr

Picture courtesy Slaney et al.

Drawbacks

* Trading space with time, strongly super-linear
space

— Even in practice, typically 5-20 times more memory than dataset itself

e Space-time tradeoff mostly practical effective
for medium-high dimensions, dense vectors

— recent advances in ML about dense embeddings

Probing multiple times

* |dea: Can we reduce space while not affecting

query time by too much?

— need to hit buckets that have high probability of the containing the nearest
neighbour

Entropy based LSH

* Assume that we know R(p, q) = distance
from query g to nearest neighbour p

— Buckets are a random partition of the data

— The success probability of a bucket (i.e. of containing p) depends only
on R(p,q)
— ldeally, we can sort the buckets by this probability

Entropy based LSH

[Panigrahy’ 06]

* Elegant way to sample from the success
probability distribution

— Perturb the query point repeatedly and probe
— Buckets that have high probability should come up ofte
— Theoretical guarantee

Multi-probe LSH

* Look at neighbouring buckets!
* Consider LSH for L2 o

hy,p(q) = {q . 1‘1}+ b‘

Multi-probe LSH

e Supposek =3

* Hl(q) — (5' 8r 3)
* We consider buckets that differ in one position, two positions, ...

Formalizing

e A €{—1,0,+1}* be a “perturbation” vector

— Eg.A=(-1,0,+1,41,0...—1)

— We get a new hash bucket by doing H(q) + A
— Say A has at most S nonzeros

— Number of possible A is:

* |s there a natural way to order these buckets for
searching?

Success Probability Estimation

T fi(q) = q - v; + b; be the projection
. /7 Of q

Il
Y /
SONNNL X 1) x(1) N

x;(+1) and x;(—1) be the distance of

<&
<

|
i

| O

Yf(q) R the projection to the two boundaries
hi(q)-1 hi(q) hi(q)+1
Image from Lv et al. fi(q) — fi(lp) ~N(,Clp —q]|) by

property of normal distribution

Success Probability Estimation

T x;(+1) and x;(—1) be the distance of the
\ 7 projection to the two boundaries
NN xi(-1) & xi(1) /////// //
SO S VAR Pl /'//'//'/"/;/ o2
} % = fil@ = fie) ~ N(O,Clp —ql) by
. Yff(q) A — property of normal distribution
hi(q)-1 hi(q) hi(q)+1

Image from Lv et al. Prlh;(p) = hi(q) + 1] = exp(—Cxl-(+1)2)

Ordering buckets

e If A = (8; ...6;) then

Pr[H(p) = H(q) + A] = Pr[][h;(q) = h;(q) + &;]
~ 1_[exp(—Cx;(8;)*) = exp (‘CZ xi(5i)2>

Ex:A =(+1,0,—-1),

Ordering buckets

* Define score(A) = Y. x;(5;)?

* Lower the score, higher the probability of
p being in the bucket

Ordering buckets

* Define score(A) = Y. x;(5;)?

* Lower the score, higher the probability of
p being in the bucket

* Order the buckets by the score and search
them in this order

Query directed ordering

* When a query g arrives

— Calculate H(q)
— Calculate { x;(+1)?,x;(=1)%,i = 1...k}
— Sort

Query directed ordering

* When a query g arrives

— Calculate H(q)
— Calculate { x;(+1)?, x;(=1)%,i = 1 ...k}
— Sort (call theseas z; < 7z, ... < Zy1)

* Start with A = {1} l o
° Repeatedly do either Shlft or « {153}—>E,§,:j{1,3;4,5}
— shift replace max(A4) by 1+max(A) {2} ----- .

— expand adds 1+max(A) to A

Multiprobe LSH

* Using a min-heap at query time we can use
the shift and expand operations to explore all
buckets in order

— Can optimize further

* |n practice, will stop after a budget

Number of Hash Tables

128

Experiments

‘basic
entropy

| 1 .

..... O

multi-probe A

1 1

0.8 0.82 0.84 0.8

6 0.
Recall

88 0.9 0.92 0.94 0.96 0.98 1

Number of Hash Tables

128

64

32

16

8

4

2

¥

1

0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98
Recall

20

1

Summary

While LSH is a powerful technique, there are few areas of concern, memory usage
among them

Entropy and Multi-probe LSH are elegant solutions that are useful in practice
— Shown to be useful in practice, reduce space usage by a factor

— also form part of the state-of-art LSH system

Intuition based on idea of probing multiple buckets in a query-dependent manner

References:

* Primary references for this lecture
* Multi-Probe LSH: Efficient Indexing for High Dimensional Similarity Search. By Qin
Lv, William Josephson, Zhe Wang, Moses Charikar, Kai Li, VLDB 2007

* R. Panigrahy. Entropy based nearest neighbor search in high dimensions. In Proc. of
ACM-SIAM Symposium on Discrete Algorithms(SODA), 2006.

22

LEARNING TO HASH

Locality Sensitive Hashing

K projections L tables Given input data, radius r, approx factor c and

Hash lm\\ m:&fges confident §
tf:;r::ieTs disfavnce Output: if there is any point at distance < r then w.p.
1 — & return one at distance < cr

Results

Algo: Choose (k, L).
do L times

iid hash functions : {hj; hy}

Create hash table H; by putting each x in bucket
H;(x) = (hiz (), .. hy (x))

Store non-empty buckets in normal hash table
Picture courtesy Slaney et al.

24

Issues

Parameters k, L need to be tuned for each domain

Random directions are meant to create a random partitioning of the
dataset

While useful to guard against “worst case datasets”, we do not exploit the
dataset structure

Hashing as binary codes

* Assume points are in Euclidean space

ow can we get binary vectors so that

|_
Hamming distance approximates Euclidean
distance

Properties of a binary code

* Should be easily computable
* Should preserve distances approximately

 Should have small number of bits

— the bits should be independent and unbiased

Optimization

* W;; = similarity between i and j

2
—Say W;; = exp(—|xl_x1|)

S

* y; = codeword for point i
|2

yi —Y;| alsoequals Hamming(i, j)

Learning codes

Average hamming distance = Zij Wij‘yi —Yj

yi € {—1,+1}%
Each bit should be unbiased: »,;y; =0

Bits should be uncorrelated Y, y;y; =1

‘2

Casting as optimization problem

[Waiss et al.]
e Can we solve : minimize Zij Wijb’i — Yj‘z
* subject to
—y; € {—1,+1}*
-2iyi=0
- Yiyiyi =1

Hardness

* Unfortunately, no!, even for single bit

* Graph partitioning problem: For graph G
partition V(G) into two sets A and B such that
|A| — |B| and minimize Z W;;

€A JEB

Spectral Relaxation

Y = nXk code matrix
* Diagonal D, D;; = Zj Wi;

* minimize };; Wl-j‘yl- — yj|2 =trace(Y*(D — W)Y)
-Yt-1=0
- Yty =1
— Drop the constraint that Y are in {—1, +1}

Spectral codes

 The above problem is solved by Y = smallest

— k eigenvectorsof D — W
— After dropping the one with value 0

* To get codes,

— We could threshold eigenvectors, but then hard to extend it for query

Eigenvectors

* Assume that the data is coming from some
distribution in R¢

— But estimating this distribution is hard also

— We could try to interpolate the eigenvectors to query points, under
above assumptions, but is computationally expensive (Nystrom
extension)

Eigenvectors

* Assume that the data is coming from some
distribution in R¢

— But estimating this distribution is hard also

— We could try to interpolate the eigenvectors to query points, under above
assumptions, but is computationally expensive (Nystrom extension)

* Assume data distribution is product of uniform

distributions
— Use PCA to find the axes

Eigenfunctions

Take limit of eigenvectors as n = o, and consider the “normalized”
similarity matrix (Laplacian)

Analytical form of Eigenfunctions exists for certain distributions (uniform,
Gaussian)

For uniform
T kT
®L(x) = sin(— X
o) = sin(G+ =)
62 km |2
)\k p— 1—€_Tm

Constant time calculation for any new point

36

[Image from Waiss et al]

Algorithm

Input: Data {x;}, target dimensionality k

37

Algorithm

Createtop k PCAof D — W

Gives us top k axes
Find the [a;, b;] for each axes
and create ¢ (x) ... ¢ (x) for each direction

38

Algorithm

Createtop k PCAof D — W

Gives us top k axes
Find the [a;, b;] for each axes

and create ¢ (x) ... $; (%)
and A;q ... A;, for each direction

Total dk eigenvalues—> sort and take the top k
eigenvalues and corresponding functions

39

Threshold chosen
Eigenfunctions

Empirical observation:

bit codes

seem robust to the
uniform assumption

Algorithm

by

40

Results

 Shown to have better properties than naive LSH on
large datasets

=3
o
T

o
n
T

o
=

o
w
T

o
i~
T

e
T

Spectral hashing

umps boosting SSC

Proportion good neighbors for hamming distance < 2

1 1 1 1 J
20 kL 40 50 @

number of bits

[Image from Waiss et al]

41

Summary

e Large literature on learning the hash codes rather than use random
projection
— Liu, Wei, Jun Wang, Rongrong Ji, Yu-Gang Jiang, and Shih-Fu Chang.
"Supervised hashing with kernels." IEEE CVPR 2012.
— Muja, Marius, and David G. Lowe. "Scalable nearest neighbor algorithms
for high dimensional data." /EEE TPAMI (2014): 2227-2240.

— Wang, Jingdong, Heng Tao Shen, Jingkuan Song, and Jianqiu Ji. "Hashing
for similarity search: A survey." arXiv preprint arXiv:1408.2927 (2014).

* Unfortunately, theoretical guarantees are not available for such data-
dependent version

— time to calculate projections might also be higher.

References:

Primary references for this lecture
* Spectral Hashing, Yair Weiss, Antonio Torralba and Rob Fergus. [N/PS], 2008

43

