CS60021: Scalable Data Mining

Similarity Search and Hashing

Finding Similar [tems

Distance Measures

= Goal: Find near-neighbors in high-dim. space
— We formally define “near neighbors” as
points that are a “small distance” apart
* For each application, we first need to define what “distance”
means

* Today: Jaccard distance/similarity

— The Jaccard similarity of two sets is the size of their intersection divided
by the size of their union:
sim(Cy, G;) = |CiNG, | /1C UG |
— Jaccard distance: d(C,, C,) =1 - |C;NG, | /| C, UG, |
3 in intersection
8 in union

Jaccard similarity= 3/8
Jaccard distance = 5/8

Task: Finding Similar Documents

* Goal: Given a large number (#in the millions or billions) of
documents, find “near duplicate” pairs

* Applications:
— Mirror websites, or approximate mirrors

 Don’t want to show both in search results

— Similar news articles at many news sites
e Cluster articles by “same story”

* Problems:

— Many small pieces of one document can appear
out of order in another

— Too many documents to compare all pairs

— Documents are so large or so many that they cannot
fit in main memory

3 Essential Steps for Similar Docs

1. Shingling: Convert documents to sets

2. Min-Hashing: Convert large sets to short signatures,
while preserving similarity

3. Locality-Sensitive Hashing: Focus on
pairs of signatures likely to be from
similar documents

— Candidate pairs!

Docu-
ment

T

The Big Picture

Shingling

/

Locality-
Sensitive
Hashing

\
| Min -
T | Hashing r

/
The set Signatures:
of strings short integer
of length k vectors that
that appear represent the
in the doc- sets, and
ument reflect their

similarity

Candidate
pairs:

those pairs
of signatures
that we need
to test for
similarity

Docu-

ment w ‘ >

The set
of strings
of length k

that appear
in the doc-
ument

Shingling

Step 1: Shingling: Convert documents to sets

Documents as High-Dim Data

Step 1: Shingling: Convert documents to sets

Simple approaches:

— Document = set of words appearing in document
— Document = set of “important” words

— Don’t work well for this application. Why?

Need to account for ordering of words!
A different way: Shingles!

Define: Shingles

* A k-shingle (or k-gram) for a document is a sequence
of k tokens that appears in the doc

— Tokens can be characters, words or something else,
depending on the application

— Assume tokens = characters for examples

* Example: k=2; document D, = abcab
Set of 2-shingles: S(D,) = {ab, bc, ca}

— Option: Shingles as a bag (multiset), count ab twice: S’(D,)
= {ab, bc, ca, ab}

Compressing Shingles

* To compress long shingles, we can hash them to (say) 4 bytes

* Represent a document by the set of hash values of its k-
shingles

— ldea: Two documents could (rarely) appear to have shingles in
common, when in fact only the hash-values were shared

* Example: k=2; document D,= abcab
Set of 2-shingles: S(D,) = {ab, bc, ca}
Hash the singles: h(D,) = {1, 5, 7}

10

Similarity Metric for Shingles

Document D, is a set of its k-shingles C,=S(D,)

Equivalently, each document is a
0/1 vector in the space of k-shingles
— Each unique shingle is a dimension
— Vectors are very sparse

A natural similarity measure is the
Jaccard similarity:

sim(Dy, D) = [C;NG, /] CuG |

Working Assumption

 Documents that have lots of shingles in common
have similar text, even if the text appears in
different order

e Caveat: You must pick k large enough, or most
documents will have most shingles
— k=5 is OK for short documents
— k=10 is better for long documents

12

Motivation for Minhash / LSH

e Suppose we need to find near-duplicate documents
among /=1 million documents

* Naively, we would have to compute pairwise
Jaccard similarities for every pair of docs

— N(N-1)/2 = 5*%10 comparisons
— At 10° secs/day and 10°® comparisons/sec,
it would take 5 days

 For ¥= 10 million, it takes more than a year...

13

Docu- \‘ Min-Hash-
— Shingling < >

The set Signatures:
of strings short integer
of length k vectors that
that appear represent the
in the doc- sets, and
ument reflect their
similarity

MinHashing

Step 2: Minhashing: Convert large sets to
short signatures, while preserving similarity

Encoding Sets as Bit Vectors

Many similarity problems can be
formalized as finding subsets that
have significant intersection

Encode sets using 0/1 (bit, boolean) vectors
— One dimension per element in the universal set

Interpret set intersection as bitwise AND, and
set union as bitwise OR

Example: C; =10111; C, =10011
— Size of intersection = 3; size of union =4,
— Jaccard similarity (not distance) = 3/4
— Distance: d(C,,C,) = 1 — (Jaccard similarity) = 1/4

15

From Sets to Boolean Matrices

Rows = elements (shingles)

Columns = sets (documents)
— linroweand columnsifandonlyifeisa
member of s

— Column similarity is the Jaccard similarity of the
corresponding sets (rows with value 1)

— Typical matrix is sparse!

Each document is a column:
— Example: sim(C,,C,) =?

» Size of intersection = 3; size of union =6,
Jaccard similarity (not distance) = 3/6

» d(C,,C,) =1 - (Jaccard similarity) = 3/6

Shingles

Documents
1 (1 |1 |0
1 (1 |0 |1
O |1 [0 |1
O |0 [0 |1
1 (0 |0 |1
1 (1 |1 |0
1 (0 |1 |0

16

Outline: Finding Similar Columns

* So far:
— Documents — Sets of shingles

— Represent sets as boolean vectors in a matrix

* Next goal: Find similar columns while
computing small signatures

— Similarity of columns == similarity of signatures

17

Outline: Finding Similar Columns

* Next Goal: Find similar columns, Small signatures
* Naive approach:

— 1) Signatures of columns: small summaries of columns
— 2) Examine pairs of signatures to find similar columns
e Essential: Similarities of signatures and columns are related

— 3) Optional: Check that columns with similar signatures
are really similar

* Warnings:

— Comparing all pairs may take too much time: Job for LSH

 These methods can produce false negatives, and even false
positives (if the optional check is not made)

18

Hashing Columns (Signatures)

Key idea: “hash” each column C to a small signature h(C), such
that:

— (1) h(C) is small enough that the signature fits in RAM

— (2) sim(C,, C,) is the same as the “similarity” of signatures h(C,;) and h(C,)

Goal: Find a hash function h(:) such that:
— If sim(C,,C,) is high, then with high prob. h(C,) = h(C,)
— If sim(C,,C,) is low, then with high prob. h(C,) # h(C,)

Hash docs into buckets. Expect that “most” pairs of near
duplicate docs hash into the same bucket!

19

Min-Hashing

Goal: Find a hash function h(-) such that:
— if sim(C,,C,) is high, then with high prob. h(C,) = h(C,)
— if sim(C,,C,) is low, then with high prob. h(C,) # h(C,)

Clearly, the hash function depends on
the similarity metric:

— Not all similarity metrics have a suitable
hash function

There is a suitable hash function for
the Jaccard similarity: It is called Min-Hashing

20

Min-Hashing

Imagine the rows of the boolean matrix permuted under
random permutation 7

Define a “hash” function h (C) = the index of the first (in the
permuted order 1) row in which column C has value 1:

h,(C) = min; 7(C)

Use several (e.g., 100) independent hash functions (that is,
permutations) to create a signature of a column

21

Min-Hashing Example

2"d element of the permutation
is the first to map to a 1

0
0
\1\

\ 4t element of the permutation

is the first to map to a 1

| O kFr| kK

22

The Min-Hash Property

* Choose arandom permutation &t

* Claim: Pr[h,(C,) = h (C,)] =sim(C,, C,)

e Why?
— Let X be a doc (set of shingles), ye X'is a shingle

R Ol O| = | O)| O
O| R, | O| = O O

— Then: Pr[r(y) = min(rt(X))] = 1/| X]|
* |tis equally likely that any y € X is mapped to the min element
— Lety bes.t. n(y) = min(n(C,UC,))

— Then either: n(y) = min(n(C,)) ify € C, or
n(y) = min(n(C,)) ify € G,
— So the prob. that both are true is the prob.y € C; N C, One of the two

. . . cols had to have
— Pr[min(n(C,))=min(r(C,))]=| C,NC, |/ C,UGC, | = sim(C,, C,) 1 at position y

23

Four Types of Rows

* Given cols C, and C,, rows may be classified as:

G G
A 1 1
B 1 O
cC 0 1
D O O

— a=#rows of type A, etc.
* Note: sim(C,, C,) =a/(a +b +c)
« Then: Pr[h(C,) = h(C,)] = Sim(C,, C,)
— Look down the cols C; and C, until we see a1

— If it’s a type-A row, then h(C,) = h(C,)
If a type-B or type-C row, then not

24

Similarity for Signatures

We know: Pr[h_(C,) = h_(C,)] = sim(C,, C,)

Now generalize to multiple hash functions

The similarity of two signatures is the fraction of
the hash functions in which they agree

Note: Because of the Min-Hash property, the
similarity of columns is the same as the expected
similarity of their signatures

Min-Hashing Example

Permutation t Input matrix (Shingles x Documents)) .
Signature matrix M

2114113 1 (0O |1 |0 > 11 12 [1
*
3112114 1 (0 |0 |1 > 11 14 11
1 1 +
147 0 0 1 |12 |1 |2
6132 O (1 |0 |1)
1116||6 O (1 |0 |1 Similarities:
13 24 12 3-
>[17)111 11 |10 |11 |0 | colycol 075 075 0 0O
2l slls] [7 To 11 [o | sie/sig|0.67 1.00 0 0

Min-Hash Sighatures

Pick K=100 random permutations of the rows
Think of sig(C) as a column vector

sig(C)[i] = according to the i-th permutation, the index of the first
row that hasa 1l in column C

sig(C)[i] = min (7,(C))
Note: The sketch (signature) of document Cis small ~100 bytes!

We achieved our goal! We “compressed”
long bit vectors into short signatures

27

Implementation Trick

* Permuting rows even once is prohibitive

 Row hashing!
— Pick K =100 hash functions k;

— Ordering under k; gives a random row permutation!

* One-pass implementation

— For each column € and hash-func. k; keep a “slot” for the min-

hash value
— Initialize all sig(C)[i] =

— Scan rows looking for 1s
e Suppose row jhas 1in columnC
* Then for each k;:

— If ki(j) < sig(C)[i], then sig(C)[i] « ki(j)

How to pick a random

hash function h(x)?
Universal hashing:

h, p(x)=((a-x+b) mod p) mod N
where:

a,b ... random integers

p ... prime number (p > N)

28

Docu-
ment

=

The set

of strings
of length k
that appear
in the doc-
ument

Locality Sensitive Hashing
Step 3: Locality-Sensitive Hashing:

=

A 4

Locality-
Sensitive
Hashing

Signatures:
short integer
vectors that
represent the
sets, and

reflect their
similarity

Candidate
pairs:

those pairs
of signatures
that we need
to test for
similarity

Focus on pairs of signatures likely to be from
similar documents

LSH: First Cut

* Goal: Find documents with Jaccard similarity at
least s (for some similarity threshold, e.g., s=0.8)

* LSH - General idea: Use a function f(x,y) that
tells whether x and y is a candidate pair: a pair
of elements whose similarity must be evaluated

* For Min-Hash matrices:

— Hash columns of signature matrix M to many buckets

— Each pair of documents that hashes into the
same bucket is a candidate pair

30

Candidates from Min-Hash

* Pick a similarity threshold s (0 <s < 1)

 Columns x and y of M are a candidate pair if
their signatures agree on at least fraction s of

their rows:
M (i, x) = M (i, y) for at least frac. s values of i

— We expect documents x and y to have the same
(Jaccard) similarity as their signatures

LSH for Min-Hash

* Big idea: Hash columns of
signature matrix M several times

* Arrange that (only) similar columns are
likely to hash to the same bucket, with
high probability

* Candidate pairs are those that hash to
the same bucket

32

Partition M into b Bands

r rows
per band

b bands

\ One

signature

Signature matrix M
33

Partition M into Bands

Divide matrix M into b bands of r rows

For each band, hash its portion of each
column to a hash table with k buckets

— Make k as large as possible

Candidate column pairs are those that hash
to the same bucket for = 1 band

Tune b and r to catch most similar pairs,
but few non-similar pairs

Hashing Bands

Columns 2 and 6

Bucketf\ ' are probably identical
f X \/ (candidate pair)
Columns 6 and 7 are
""" surely different.
athix M\ N
! bb
r rows ands

35

Simplifying Assumption

* There are enough buckets that columns are
unlikely to hash to the same bucket unless
they are identical in a particular band

 Hereafter, we assume that “same bucket”
means “identical in that band”

* Assumption needed only to simplify analysis,
not for correctness of algorithm

36

e Suppose 100,000 columns of M (100k docs)

Example of Bands

Assume the following case:

Signatures of 100 integers (rows)
Therefore, signatures take 40Mb
Choose b = 20 bands of r =5 integers/band

Goal: Find pairs of documents that
are at least s = 0.8 similar

37

C,, C, are 80% Similar

Find pairs of > s=0.8 similarity, set b=20, r=5
Assume: sim(C,, C,) = 0.8
— Since sim(C4, C,) ='s, we want C;, C, to be a candidate

pair: We want them to hash to at least 1 common bucket
(at least one band is identical)

Probability C,, C, identical in one particular
band: (0.8)° = 0.328

Probability C,, C, are not similar in all of the 20
bands: (1-0.328)%° = 0.00035

— i.e., about 1/3000th of the 80%-similar column pairs
are false negatives (we miss them)

— We would find 99.965% pairs of truly similar documents

38

C,, C, are 30% Similar

Find pairs of > s=0.8 similarity, set b=20, r=5
Assume: sim(C,, C,) =0.3

— Since sim(C,, C,) < s we want C,, C, to hash to NO
common buckets (all bands should be different)

Probability C,, C, identical in one particular
band: (0.3)> =0.00243

Probability C,, C, identical in at least 1 of 20
bands: 1 -(1-0.00243)%°=0.0474

— In other words, approximately 4.74% pairs of docs
with similarity 0.3% end up becoming candidate pairs
* They are false positives since we will have to examine them

(they are candidate pairs) but then it will turn out their
similarity is below threshold s 39

LSH Involves a Tradeoff

* Pick:
— The number of Min-Hashes (rows of M)

— The number of bands b, and

— The number of rows r per band

to balance false positives/negatives

 Example: If we had only 15 bands of 5
rows, the number of false positives would
go down, but the number of false negatives
would go up

Analysis of LSH — What We Want

/

" Probability = 1
[o ift> s
@]
)
Probability No chance 9_5)
of sharing fre o e
a bucket 2
©
=
(0p)]

\

Similarity ¢ =sim(C,, C;) of two sets ——

What 1 Band of 1 Row Gives You

Probability Remember:

of sharing Probability of

a bucket equal hash-values
= similarity

Similarity ¢ =sim(C,, C;) of two sets ——

b bands, r rows/band

Columns C; and C, have similarity t

Pick any band (r rows)
— Prob. that all rows in band equal = t*

— Prob. that some row in band unequal =1 -t

Prob. that no band identical = (1 - t")®

Prob. that at least 1 band identical =
1-(1-t)

What b Bands of r Rows Gives You

(Al least No bands
one b_and identical
identical /

Probability s ~ (1/b)/r 1-(1-s9b
of sharing
a bucket ﬁ‘/ / \
All rows
_ SOME rOW £ 4 hand

i ofaband zre equal
Similarity t=sim(C, Cy)of two sets —» unequal

44

Example: b =20;r =5

* Similarity threshold s
* Prob. that at least 1 band is identical:

1-(1-s")P
.006
047
.186
470
.802
975
9996

o N~ lw(N o

Picking r and b: The S-curve

* Picking r and b to get the best S-curve

— 50 hash-functions (r=5, b=10)

1

091

Prob. sharing a bucket

011

0.8}
0.7]
0.6}
05}
041
03[

02}

0 L L L I
0O o1t 02 03 04 05 06 07 08 09 1

Similarity

Blue area: False Negative rate
Green area: False Positive rate

46

LSH Summary

e Tune M, b, r to get almost all pairs with

similar signatures, but eliminate most pairs
that do not have similar signatures

* Check in main memory that candidate pairs
really do have similar signatures

* Optional: In another pass through data,
check that the remaining candidate pairs
really represent similar documents

Summary: 3 Steps

Shingling: Convert documents to sets

— We used hashing to assign each shingle an ID

Min-Hashing: Convert large sets to short signatures, while
preserving similarity

— We used similarity preserving hashing to generate signatures with
property Pr[h,(C,) = h.(C,)] = sim(C,, C;)

— We used hashing to get around generating random permutations

Locality-Sensitive Hashing: Focus on pairs of signatures likely to
be from similar documents

— We used hashing to find candidate pairs of similarity >'s

48

References:

Primary references for this lecture
* Modern Massive Datasets, Rajaraman, Leskovec, Ullman.
* Survey by Andoni et al. (CACM 2008) available at www.mit.edu/~andoni/LSH

49

http://www.mit.edu/~andoni/LSH

