CS60021: Scalable Data Mining

Similarity Search and Hashing

Sourangshu Bhattacharya

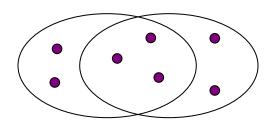
Finding Similar Items

Distance Measures

- Goal: Find near-neighbors in high-dim. space
- We formally define "near neighbors" as points that are a "small distance" apart
- For each application, we first need to define what "distance" means
- Today: Jaccard distance/similarity
- The Jaccard similarity of two sets is the size of their intersection divided by the size of their union:

$$sim(C_1, C_2) = |C_1 \cap C_2|/|C_1 \cup C_2|$$

- Jaccard distance: $d(C_1, C_2) = 1 - |C_1 \cap C_2| / |C_1 \cup C_2|$



3 in intersection 8 in union Jaccard similarity= 3/8 Jaccard distance = 5/8

Task: Finding Similar Documents

 Goal: Given a large number (N in the millions or billions) of documents, find "near duplicate" pairs

Applications:

- Mirror websites, or approximate mirrors
 - Don't want to show both in search results
- Similar news articles at many news sites
 - Cluster articles by "same story"

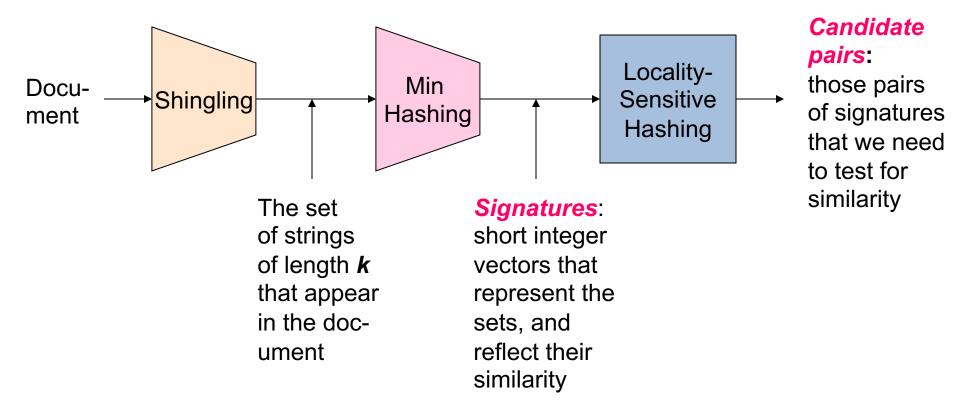
Problems:

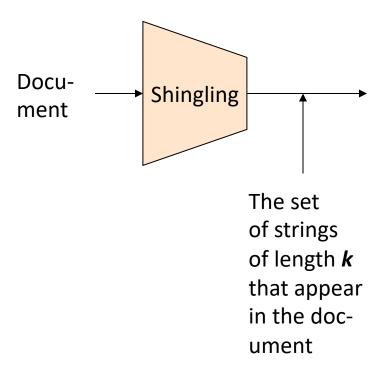
- Many small pieces of one document can appear out of order in another
- Too many documents to compare all pairs
- Documents are so large or so many that they cannot fit in main memory

3 Essential Steps for Similar Docs

- 1. Shingling: Convert documents to sets
- Min-Hashing: Convert large sets to short signatures, while preserving similarity
- 3. Locality-Sensitive Hashing: Focus on pairs of signatures likely to be from similar documents
 - Candidate pairs!

The Big Picture





Shingling

Step 1: Shingling: Convert documents to sets

Documents as High-Dim Data

Step 1: Shingling: Convert documents to sets

- Simple approaches:
 - Document = set of words appearing in document
 - Document = set of "important" words
 - Don't work well for this application. Why?
- Need to account for ordering of words!
- A different way: Shingles!

Define: Shingles

- A k-shingle (or k-gram) for a document is a sequence of k tokens that appears in the doc
 - Tokens can be characters, words or something else, depending on the application
 - Assume tokens = characters for examples
- Example: k=2; document D_1 = abcab Set of 2-shingles: $S(D_1)$ = {ab, bc, ca}
 - Option: Shingles as a bag (multiset), count ab twice: S'(D₁)
 = {ab, bc, ca, ab}

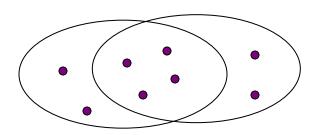
Compressing Shingles

- To compress long shingles, we can hash them to (say) 4 bytes
- Represent a document by the set of hash values of its kshingles
 - Idea: Two documents could (rarely) appear to have shingles in common, when in fact only the hash-values were shared
- Example: k=2; document D_1 = abcab Set of 2-shingles: $S(D_1)$ = {ab, bc, ca} Hash the singles: $h(D_1)$ = {1, 5, 7}

Similarity Metric for Shingles

- Document D₁ is a set of its k-shingles C₁=S(D₁)
- Equivalently, each document is a 0/1 vector in the space of k-shingles
 - Each unique shingle is a dimension
 - Vectors are very sparse
- A natural similarity measure is the Jaccard similarity:

$$sim(D_1, D_2) = |C_1 \cap C_2|/|C_1 \cup C_2|$$

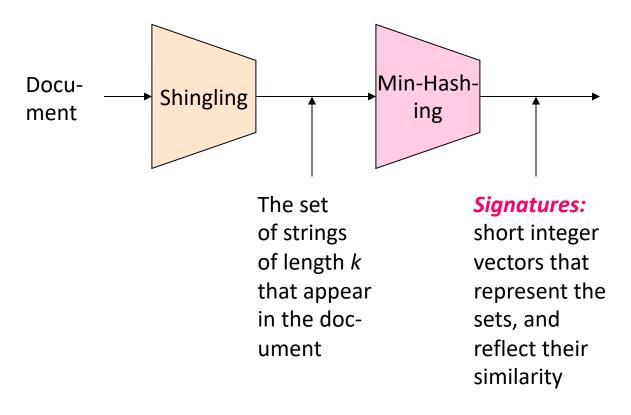


Working Assumption

- Documents that have lots of shingles in common have similar text, even if the text appears in different order
- Caveat: You must pick k large enough, or most documents will have most shingles
 - k = 5 is OK for short documents
 - k = 10 is better for long documents

Motivation for Minhash / LSH

- Suppose we need to find near-duplicate documents among N=1 million documents
- Naïvely, we would have to compute pairwise
 Jaccard similarities for every pair of docs
 - $-N(N-1)/2 \approx 5*10^{11}$ comparisons
 - At 10⁵ secs/day and 10⁶ comparisons/sec,
 it would take 5 days
- For N = 10 million, it takes more than a year...

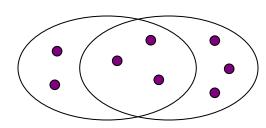


MinHashing

Step 2: Minhashing: Convert large sets to short signatures, while preserving similarity

Encoding Sets as Bit Vectors

 Many similarity problems can be formalized as finding subsets that have significant intersection



- Encode sets using 0/1 (bit, boolean) vectors
 - One dimension per element in the universal set
- Interpret set intersection as bitwise AND, and set union as bitwise OR
- Example: $C_1 = 101111$; $C_2 = 100111$
 - Size of intersection = 3; size of union = 4,
 - Jaccard similarity (not distance) = 3/4
 - Distance: $d(C_1,C_2) = 1 (Jaccard similarity) = 1/4$

From Sets to Boolean Matrices

- **Rows** = elements (shingles)
- **Columns** = sets (documents)
 - 1 in row e and column s if and only if e is a member of s
 - Column similarity is the Jaccard similarity of the corresponding sets (rows with value 1)
 - Typical matrix is sparse!
- **Each document is a column:**
 - Example: $sim(C_1, C_2) = ?$
 - Size of intersection = 3; size of union = 6, Jaccard similarity (not distance) = 3/6
 - $d(C_1,C_2) = 1 (Jaccard similarity) = 3/6$

	1	1
	1	1
S	0	1
III IGIES	0	0
ס		

Documents

 \mathbf{O}

Outline: Finding Similar Columns

- So far:
 - Documents → Sets of shingles
 - Represent sets as boolean vectors in a matrix
- Next goal: Find similar columns while computing small signatures
 - Similarity of columns == similarity of signatures

Outline: Finding Similar Columns

- Next Goal: Find similar columns, Small signatures
- Naïve approach:
 - 1) Signatures of columns: small summaries of columns
 - 2) Examine pairs of signatures to find similar columns
 - Essential: Similarities of signatures and columns are related
 - Optional: Check that columns with similar signatures are really similar

Warnings:

- Comparing all pairs may take too much time: Job for LSH
 - These methods can produce false negatives, and even false positives (if the optional check is not made)

Hashing Columns (Signatures)

- Key idea: "hash" each column C to a small signature h(C), such that:
 - (1) h(C) is small enough that the signature fits in RAM
 - (2) $sim(C_1, C_2)$ is the same as the "similarity" of signatures $h(C_1)$ and $h(C_2)$

- Goal: Find a hash function h(·) such that:
 - If $sim(C_1, C_2)$ is high, then with high prob. $h(C_1) = h(C_2)$
 - If $sim(C_1, C_2)$ is low, then with high prob. $h(C_1) \neq h(C_2)$

•

 Hash docs into buckets. Expect that "most" pairs of near duplicate docs hash into the same bucket!

Min-Hashing

- Goal: Find a hash function $h(\cdot)$ such that:
 - if $sim(C_1, C_2)$ is high, then with high prob. $h(C_1) = h(C_2)$
 - if $sim(C_1, C_2)$ is low, then with high prob. $h(C_1) \neq h(C_2)$
- Clearly, the hash function depends on the similarity metric:
 - Not all similarity metrics have a suitable hash function
- There is a suitable hash function for the Jaccard similarity: It is called Min-Hashing

Min-Hashing

- Imagine the rows of the boolean matrix permuted under random permutation π
- Define a "hash" function $h_{\pi}(C)$ = the index of the first (in the permuted order π) row in which column C has value $\mathbf{1}$:

$$h_{\pi}(\mathbf{C}) = \min_{\pi} \pi(\mathbf{C})$$

 Use several (e.g., 100) independent hash functions (that is, permutations) to create a signature of a column

Min-Hashing Example

2nd element of the permutation is the first to map to a 1

	is the first to map to a 1													
F	Permutation π Input matrix (Shingles x Documents) Signature matrix M													
	2	4	3		1 4	0	1	0		\searrow	2	1	2	1
	3	2	4		1	0	0	1		ı	2	1	4	1
	7	1	7		0	1	0	1		ŀ	1	2 /	1	2
	6	3	2		0	1	0	1		ı				
	1	6	6		0	1	0	1	4 th element of the permutation is the first to map to a 1					ation
	5	7	1		1	0	1	0	15 (11	C III	St 10 1	παρ ιυ	aı	
	4	5	5		1	0	1	0						

The Min-Hash Property

- Choose a random permutation π
- Claim: $Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = sim(C_1, C_2)$
- Why?
 - Let X be a doc (set of shingles), $y \in X$ is a shingle
 - Then: $Pr[\pi(y) = min(\pi(X))] = 1/|X|$
 - It is equally likely that any $y \in X$ is mapped to the **min** element
 - Let **y** be s.t. $\pi(y) = \min(\pi(C_1 \cup C_2))$
 - Then either: $\pi(y) = \min(\pi(C_1))$ if $y \in C_1$, or $\pi(y) = \min(\pi(C_2))$ if $y \in C_2$
 - So the prob. that **both** are true is the prob. $\mathbf{y} \in C_1 \cap C_2$
 - $Pr[min(\pi(C_1))=min(\pi(C_2))]=|C_1 \cap C_2|/|C_1 \cup C_2|=sim(C_1, C_2)$

0	0
0	0
1	1
0	0
0	1
1	0

One of the two cols had to have 1 at position **y**

Four Types of Rows

Given cols C₁ and C₂, rows may be classified as:

$$\begin{array}{cccc} & \underline{C_1} & \underline{C_2} \\ A & 1 & 1 \\ B & 1 & 0 \\ C & 0 & 1 \\ D & 0 & 0 \\ \end{array}$$

- -a = # rows of type A, etc.
- Note: sim(C₁, C₂) = a/(a +b +c)
- Then: $Pr[h(C_1) = h(C_2)] = Sim(C_1, C_2)$
 - Look down the cols C₁ and C₂ until we see a 1
 - If it's a type-A row, then $h(C_1) = h(C_2)$ If a type-B or type-C row, then not

Similarity for Signatures

- We know: $Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = sim(C_1, C_2)$
- Now generalize to multiple hash functions
- The similarity of two signatures is the fraction of the hash functions in which they agree
- Note: Because of the Min-Hash property, the similarity of columns is the same as the expected similarity of their signatures

Min-Hashing Example

Permutation π

1	3

3

6

5

Input matrix (Shingles x Documents)

1	0	1	0
1	0	0	1
0	1	0	1
0	1	0	1
0	1	0	1
1	0	1	0
1	0	1	0

Signature matrix M

2	1	2	1
2	1	4	1
1	2	1	2

Similarities:

	1-3	2-4	1-2	3-	4
Col/Col			0	0	
Sig/Sig	0.67	1.00	0	0	

Min-Hash Signatures

- Pick K=100 random permutations of the rows
- Think of sig(C) as a column vector
- sig(C)[i] = according to the i-th permutation, the index of the first row that has a 1 in column C

$$sig(C)[i] = min(\pi_i(C))$$

- Note: The sketch (signature) of document C is small ~ 100 bytes!
- We achieved our goal! We "compressed" long bit vectors into short signatures

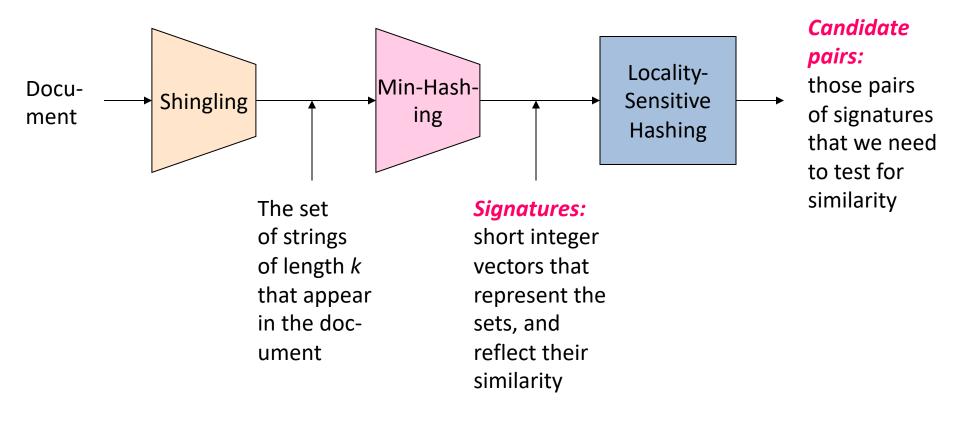
Implementation Trick

- Permuting rows even once is prohibitive
- Row hashing!
 - Pick K = 100 hash functions k_i
 - Ordering under k_i gives a random row permutation!
- One-pass implementation
 - For each column \boldsymbol{C} and hash-func. $\boldsymbol{k_i}$ keep a "slot" for the minhash value
 - Initialize all sig(C)[i] = ∞
 - Scan rows looking for 1s
 - Suppose row j has 1 in column C
 - Then for each k_i :
 - If $k_i(j)$ < sig(C)[i], then sig(C)[i] ← $k_i(j)$

How to pick a random hash function h(x)?
Universal hashing:

 $h_{a,b}(x)=((a\cdot x+b) \mod p) \mod N$ where:

a,b ... random integers p ... prime number (p > N)



Locality Sensitive Hashing

Step 3: Locality-Sensitive Hashing:

Focus on pairs of signatures likely to be from similar documents

LSH: First Cut

- Goal: Find documents with Jaccard similarity at least s (for some similarity threshold, e.g., s=0.8)
- LSH General idea: Use a function f(x,y) that tells whether x and y is a candidate pair: a pair of elements whose similarity must be evaluated
- For Min-Hash matrices:
 - Hash columns of signature matrix M to many buckets
 - Each pair of documents that hashes into the same bucket is a candidate pair

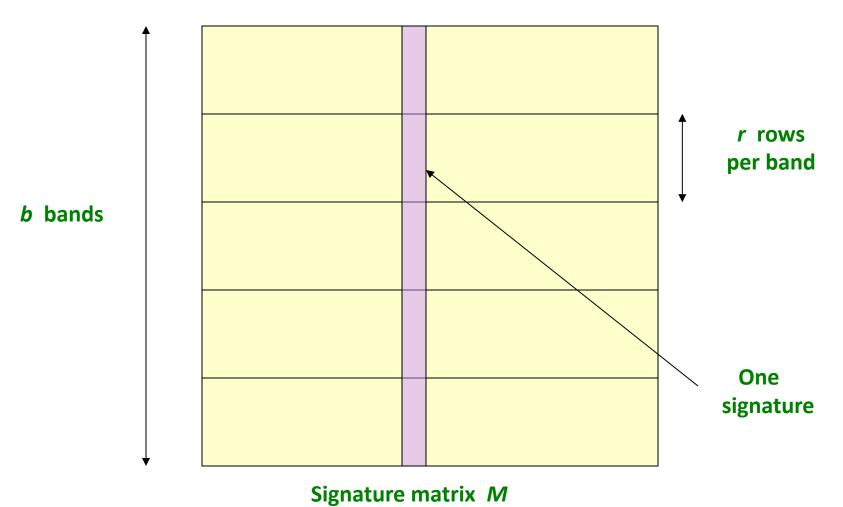
Candidates from Min-Hash

- Pick a similarity threshold s (0 < s < 1)
- Columns x and y of M are a candidate pair if their signatures agree on at least fraction s of their rows:
 - M(i, x) = M(i, y) for at least frac. s values of i
 - We expect documents x and y to have the same
 (Jaccard) similarity as their signatures

LSH for Min-Hash

- Big idea: Hash columns of signature matrix M several times
- Arrange that (only) similar columns are likely to hash to the same bucket, with high probability
- Candidate pairs are those that hash to the same bucket

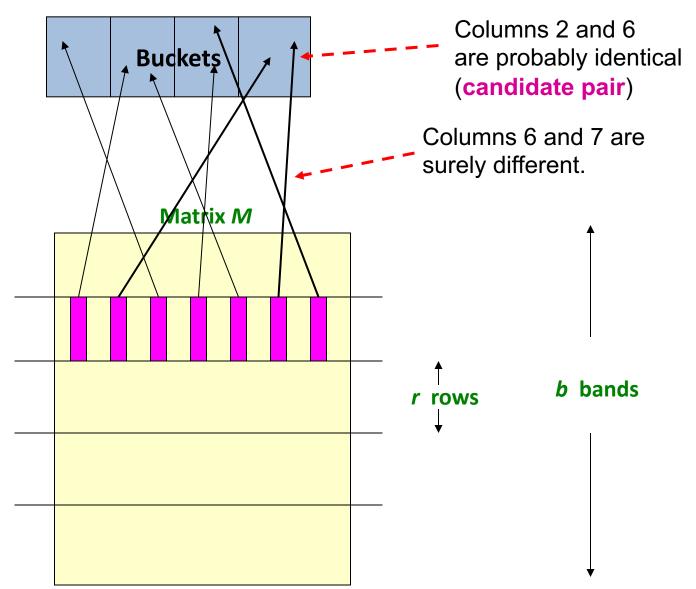
Partition *M* into *b* Bands



Partition M into Bands

- Divide matrix M into b bands of r rows
- For each band, hash its portion of each column to a hash table with k buckets
 - Make k as large as possible
- Candidate column pairs are those that hash to the same bucket for ≥ 1 band
- Tune b and r to catch most similar pairs, but few non-similar pairs

Hashing Bands



Simplifying Assumption

- There are enough buckets that columns are unlikely to hash to the same bucket unless they are identical in a particular band
- Hereafter, we assume that "same bucket" means "identical in that band"
- Assumption needed only to simplify analysis, not for correctness of algorithm

Example of Bands

Assume the following case:

- Suppose 100,000 columns of *M* (100k docs)
- Signatures of 100 integers (rows)
- Therefore, signatures take 40Mb
- Choose b = 20 bands of r = 5 integers/band
- Goal: Find pairs of documents that are at least s = 0.8 similar

C₁, C₂ are 80% Similar

- Find pairs of \geq s=0.8 similarity, set **b**=20, **r**=5
- **Assume:** $sim(C_1, C_2) = 0.8$
 - Since $sim(C_1, C_2) \ge s$, we want C_1, C_2 to be a candidate pair: We want them to hash to at least 1 common bucket (at least one band is identical)
- Probability C_1 , C_2 identical in one particular band: $(0.8)^5 = 0.328$
- Probability C_1 , C_2 are **not** similar in all of the 20 bands: $(1-0.328)^{20} = 0.00035$
 - i.e., about 1/3000th of the 80%-similar column pairs are false negatives (we miss them)
 - We would find 99.965% pairs of truly similar documents

C₁, C₂ are 30% Similar

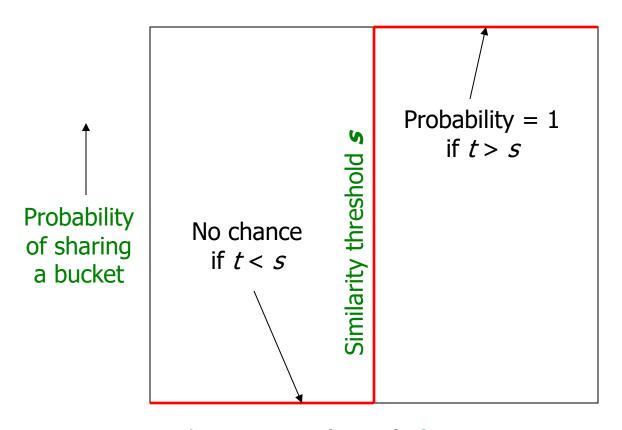
- Find pairs of \geq s=0.8 similarity, set **b**=20, **r**=5
- **Assume:** $sim(C_1, C_2) = 0.3$
 - Since $sim(C_1, C_2) < s$ we want C_1, C_2 to hash to NO common buckets (all bands should be different)
- Probability C_1 , C_2 identical in one particular band: $(0.3)^5 = 0.00243$
- Probability C_1 , C_2 identical in at least 1 of 20 bands: $1 (1 0.00243)^{20} = 0.0474$
 - In other words, approximately 4.74% pairs of docs
 with similarity 0.3% end up becoming candidate pairs
 - They are false positives since we will have to examine them (they are candidate pairs) but then it will turn out their similarity is below threshold s

LSH Involves a Tradeoff

Pick:

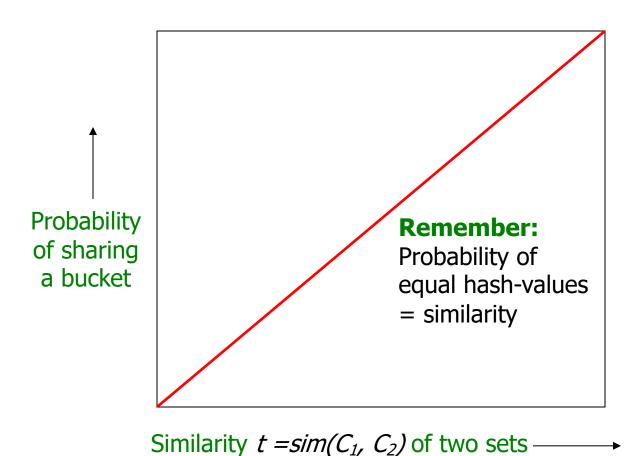
- The number of Min-Hashes (rows of *M*)
- The number of bands b, and
- The number of rows *r* per band
- to balance false positives/negatives
- Example: If we had only 15 bands of 5
 rows, the number of false positives would
 go down, but the number of false negatives
 would go up

Analysis of LSH – What We Want



Similarity $t = sim(C_1, C_2)$ of two sets ———

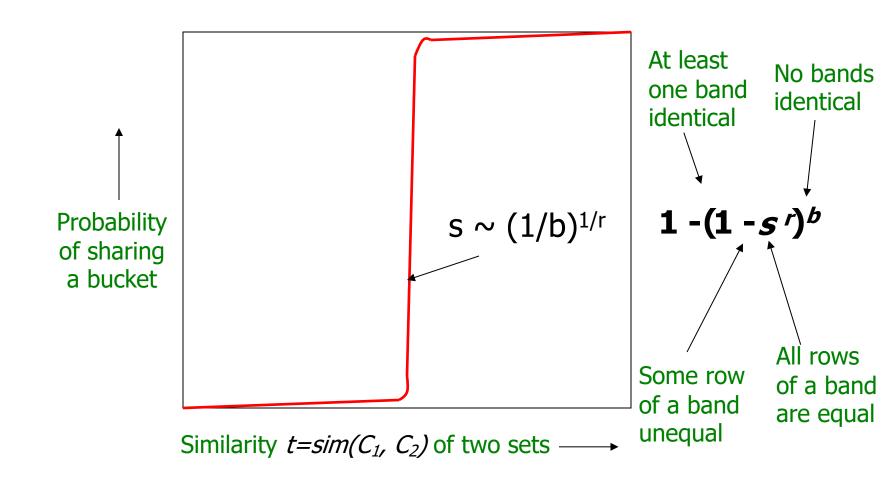
What 1 Band of 1 Row Gives You



b bands, r rows/band

- Columns C₁ and C₂ have similarity t
- Pick any band (r rows)
 - Prob. that all rows in band equal = t^r
 - Prob. that some row in band unequal = 1 t^r
- Prob. that no band identical = $(1 t^r)^b$
- Prob. that at least 1 band identical = $1 (1 t^r)^b$

What b Bands of r Rows Gives You



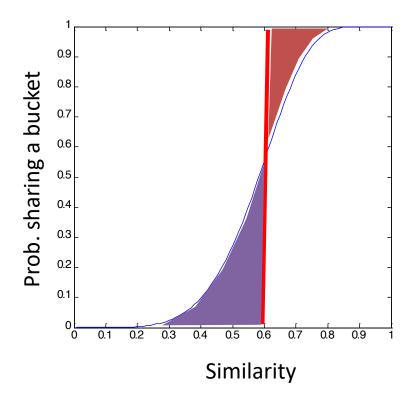
Example: b = 20; r = 5

- Similarity threshold s
- Prob. that at least 1 band is identical:

S	1-(1-s ^r) ^b
.2	.006
.3	.047
.4	.186
.5	.470
.6	.802
.7	.975
.8	.9996

Picking *r* and *b*: The S-curve

- Picking r and b to get the best S-curve
 - -50 hash-functions (r=5, b=10)



Blue area: False Negative rate

Green area: False Positive rate

LSH Summary

- Tune M, b, r to get almost all pairs with similar signatures, but eliminate most pairs that do not have similar signatures
- Check in main memory that candidate pairs really do have similar signatures
- Optional: In another pass through data, check that the remaining candidate pairs really represent similar documents

Summary: 3 Steps

- Shingling: Convert documents to sets
 - We used hashing to assign each shingle an ID
- Min-Hashing: Convert large sets to short signatures, while preserving similarity
 - We used **similarity preserving hashing** to generate signatures with property $Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = sim(C_1, C_2)$
 - We used hashing to get around generating random permutations
- Locality-Sensitive Hashing: Focus on pairs of signatures likely to be from similar documents
 - We used hashing to find **candidate pairs** of similarity \geq **s**

References:

- Primary references for this lecture
 - Modern Massive Datasets, Rajaraman, Leskovec, Ullman.
 - Survey by Andoni et al. (CACM 2008) available at www.mit.edu/~andoni/LSH