
CS60021: Scalable Data Mining

Streaming Algorithms

Sourangshu Bhattacharya

Reservoir Sampling

Data Streams
• In many data mining situations, we do not know the entire data

set in advance

• Stream Management is important when the input rate is controlled
externally:
– Google queries
– Twitter or Facebook status updates

• We can think of the data as infinite and
non-stationary (the distribution changes
over time)

3

The Stream Model

• Input elements enter at a rapid rate,
at one or more input ports (i.e., streams)
– We call elements of the stream tuples

• The system cannot store the entire stream
accessibly

• Q: How do you make critical calculations about
the stream using a limited amount of
(secondary) memory?

General Stream Processing Model

Processor

Limited
Working
Storage

. . . 1, 5, 2, 7, 0, 9, 3

. . . a, r, v, t, y, h, b

. . . 0, 0, 1, 0, 1, 1, 0
time

Streams Entering.
Each is stream is

composed of
elements/tuples

Ad-Hoc
Queries

Output

Archival
Storage

Standing
Queries

Problems on Data Streams
• Types of queries one wants on answer on

a data stream:
– Sampling data from a stream

• Construct a random sample
– Queries over sliding windows

• Number of items of type x in the last k elements
of the stream

Maintaining a fixed-size sample

• Problem: Fixed-size sample
• Suppose we need to maintain a random

sample S of size exactly s tuples
– E.g., main memory size constraint

• Why? Don’t know length of stream in advance
• Suppose at time n we have seen n items

– Each item is in the sample S with equal prob. s/n

How to think about the problem: say s = 2
Stream: a x c y z k c d e g…

At n= 5, each of the first 5 tuples is included in the sample S with equal prob.
At n= 7, each of the first 7 tuples is included in the sample S with equal prob.
Impractical solution would be to store all the n tuples seen
so far and out of them pick s at random

• Algorithm (a.k.a. Reservoir Sampling)
– Store all the first s elements of the stream to S
– Suppose we have seen n-1 elements, and now

the nth element arrives (n > s)
• With probability s/n, keep the nth element, else discard it
• If we picked the nth element, then it replaces one of the

s elements in the sample S, picked uniformly at random

• Claim: This algorithm maintains a sample S
with the desired property:
– After n elements, the sample contains each element seen

so far with probability s/n

Solution: Fixed Size Sample

Proof: By Induction

• We prove this by induction:
– Assume that after n elements, the sample contains each

element seen so far with probability s/n
– We need to show that after seeing element n+1 the

sample maintains the property
• Sample contains each element seen so far with probability s/(n+1)

• Base case:
– After we see n=s elements the sample S has the desired

property
• Each out of n=s elements is in the sample with probability s/s = 1

Proof: By Induction

1
1

11
1

+
=÷

ø
ö

ç
è
æ -
÷
ø
ö

ç
è
æ

+
+÷
ø
ö

ç
è
æ

+
-

n
n

s
s

n
s

n
s

Element n+1 discarded Element n+1
not discarded

Element in the
sample not picked

Bloom Filters

Querying

12

ISBN present in collection?

IP seen by switch?

10.0.21.102

Solutions

13

Solutions

14

Querying, Monte Carlo style

15

Bloom filter

16

[Bloom, 1970]

Bloom filter

17

Operations

18

Bloom Filter

19

Bloom Filter

20

Designing Bloom Filter

21

Effect of number of hash functions

22

False positive analysis

23

False positive analysis

24

False positive analysis

25

Choosing number of hash
functions

26

Bloom filter design

27

Applications

• Widespread applications whenever small false positives are
tolerable

• Used by browsers
– to decide whether an URL is potentially malicious: a BF is used in browser, and

positives are actually checked with the server.

• Databases e.g. BigTable, HBase, Cassandra, Postgrepsql use BF
to avoid disk lookups for non-existent rows/columns

• Bitcoin for wallet synchronization….

28

Handling deletions

29

[Fan et al 00]

30

References:
• Mining massive Datasets by Leskovec, Rajaraman, Ullman, Chapter 4.

• Primary reference for this lecture
• Survey on Bloom Filter, Broder and Mitzenmacher 2005,

https://www.eecs.harvard.edu/~michaelm/postscripts/im2005b.pdf
• http://www.firatatagun.com/blog/2016/09/25/bloom-filters-explanation-use-

cases-and-examples/

• Others
• Randomized Algorithms by Mitzenmacher and Upfal.

https://www.eecs.harvard.edu/~michaelm/postscripts/im2005b.pdf
http://www.firatatagun.com/blog/2016/09/25/bloom-filters-explanation-use-cases-and-examples/

