CS60021: Scalable Data Mining

Sourangshu Bhattacharya

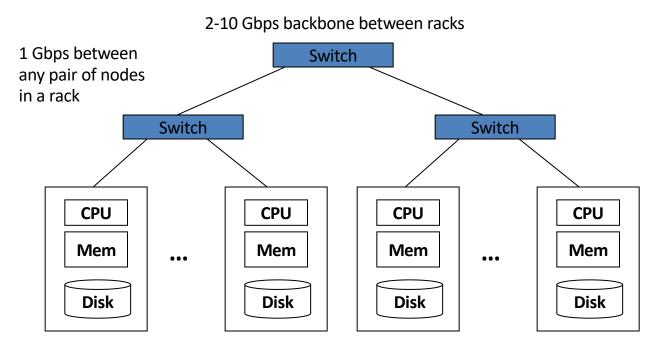
In this Lecture:

- Outline:
 - What is Big Data?
 - Issues with Big Data
 - What is Hadoop?
 - What is Map Reduce ?
 - Example Map Reduce program.

Motivation: Google Example

- 20+ billion web pages x 20KB = 400+ TB
- 1 computer reads 30-35 MB/sec from disk
 - ~4 months to read the web
- ~1,000 hard drives to store the web
- Takes even more to **do** something useful with the data!
- Today, a standard architecture for such problems is emerging:
 - Cluster of commodity Linux nodes
 - Commodity network (ethernet) to connect them

Cluster Architecture



Each rack contains 16-64 nodes

Large-scale Computing

- Large-scale computing for data mining problems on commodity hardware
- Challenges:
 - How do you distribute computation?
 - How can we make it easy to write distributed programs?
 - Machines fail:
 - One server may stay up 3 years (1,000 days)
 - If you have 1,000 servers, expect to loose 1/day
 - People estimated Google had ~1M machines in 2011
 - 1,000 machines fail every day!

Big Data Challenges

□ Scalability: processing should scale with increase in data.

□ Fault Tolerance: function in presence of hardware failure

□ Cost Effective: should run on commodity hardware

Ease of use: programs should be small

□ Flexibility: able to process unstructured data

□ Solution: Map Reduce !

Idea and Solution

- Issue: Copying data over a network takes time
- Idea:
 - Bring computation close to the data
 - Store files multiple times for reliability
- Map-reduce addresses these problems
 - Elegant way to work with big data
 - Storage Infrastructure File system
 - Google: GFS. Hadoop: HDFS
 - Programming model
 - Map-Reduce

Storage Infrastructure

- Problem:
 - If nodes fail, how to store data persistently?
- Answer:
 - Distributed File System:
 - Provides global file namespace
 - Google GFS; Hadoop HDFS;
- Typical usage pattern
 - Huge files (100s of GB to TB)
 - Data is rarely updated in place
 - Reads and appends are common

What is Hadoop ?

□ A scalable fault-tolerant distributed system for data storage and processing.

□ Core Hadoop:

□ Hadoop Distributed File System (HDFS)

□ Hadoop YARN: Job Scheduling and Cluster Resource Management

□ Hadoop Map Reduce: Framework for distributed data processing.

Open Source system with large community support. https://hadoop.apache.org/

What is Map Reduce ?

- Method for distributing a task across multiple servers.
- □ Proposed by Dean and Ghemawat, 2004.
- Consists of two developer created phases:
 - 🛛 Мар
 - □ Reduce
- □ In between Map and Reduce is the Shuffle and Sort phase.
- □ User is responsible for casting the problem into map reduce framework.
- □ Multiple map-reduce jobs can be "chained".

Programming Model: MapReduce

Warm-up task:

- We have a huge text document
- Count the number of times each distinct word appears in the file

• Sample application:

Analyze web server logs to find popular URLs

Task: Word Count

Case 1:

- File too large for memory, but all <word, count> pairs fit in memory

Case 2:

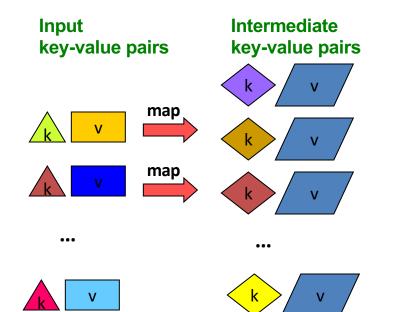
- Count occurrences of words:
 - words(doc.txt) | sort | uniq -c
 - where **words** takes a file and outputs the words in it, one per a line
- Case 2 captures the essence of MapReduce
 - Great thing is that it is naturally parallelizable

MapReduce: Overview

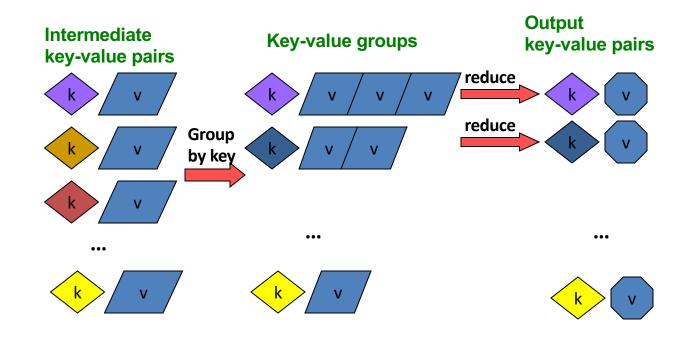
- Sequentially read a lot of data
- Map:
 - Extract something you care about
- Group by key: Sort and Shuffle
- Reduce:
 - Aggregate, summarize, filter or transform
- Write the result

Outline stays the same, Map and Reduce change to fit the problem

MapReduce: The Map Step



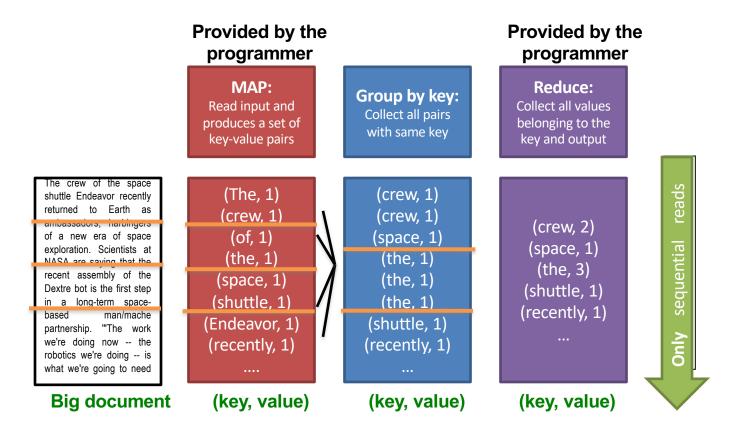
MapReduce: The Reduce Step



More Specifically

- Input: a set of key-value pairs
- Programmer specifies two methods:
 - Map(k, v) $\rightarrow \langle k', v' \rangle^*$
 - Takes a key-value pair and outputs a set of key-value pairs
 - E.g., key is the filename, value is a single line in the file
 - There is one Map call for every (k,v) pair
 - Reduce(k', <v'>*) → <k', v''>*
 - All values v' with same key k' are reduced together and processed in v' order
 - There is one Reduce function call per unique key k'

MapReduce: Word Counting



Word Count Using MapReduce

```
map(key, value):
```

// key: document name; value: text of the document
 for each word w in value:
 emit(w, 1)

```
reduce(key, values):
// key: a word; value: an iterator over counts
    result = 0
    for each count v in values:
        result += v
    emit(key, result)
```

Map Phase

User writes the mapper method.

□ Input is an unstructured record:

□ E.g. A row of RDBMS table,

□ A line of a text file, etc

• Output is a set of records of the form: <key, value>

□ Both key and value can be anything, e.g. text, number, etc.

□ E.g. for row of RDBMS table: <column id, value>

□ Line of text file: <word, count>

Shuffle/Sort phase

- □ Shuffle phase ensures that all the mapper output records with the same key value, goes to the same reducer.
- Sort ensures that among the records received at each reducer, records with same key arrives together.

Reduce phase

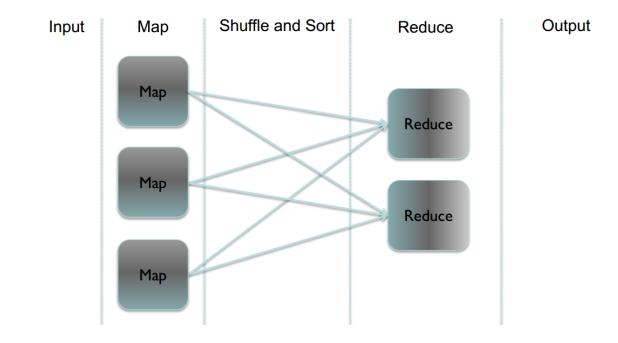
Reducer is a user defined function which processes mapper output records with some of the keys output by mapper.

Input is of the form <key, value>
 All records having same key arrive together.

□ Output is a set of records of the form <key, value>

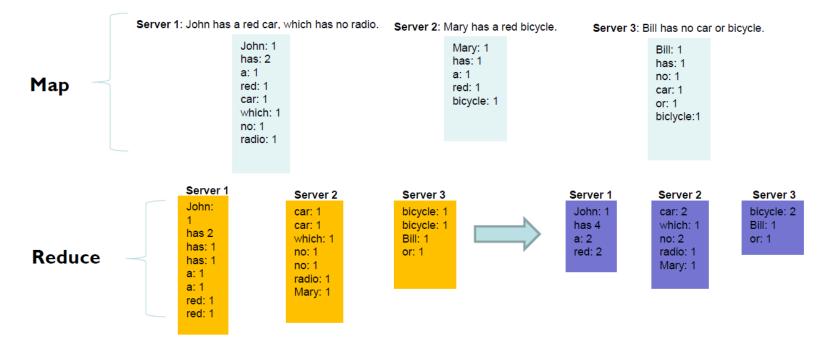
Given the second second

Parallel picture

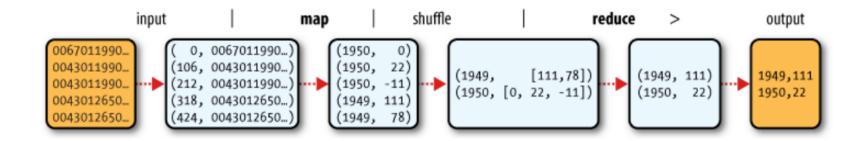


Example

Word Count: Count the total no. of occurrences of each word



Map Reduce - Example



What was the max/min temperature for the last century ?

Hadoop Map Reduce

□ Provides:

- □ Automatic parallelization and Distribution
- □ Fault Tolerance
- □ Methods for interfacing with HDFS for colocation of computation and storage of output.
- Status and Monitoring tools
- API in Java
- □ Ability to define the mapper and reducer in many languages through Hadoop streaming.

- Outline:
 - HDFS Motivation
 - HDFS User commands
 - HDFS System architecture
 - HDFS Implementation details

What's HDFS

- HDFS is a distributed file system that is fault tolerant, scalable and extremely easy to expand.
- HDFS is the primary distributed storage for Hadoop applications.
- HDFS provides interfaces for applications to move themselves closer to data.
- HDFS is designed to 'just work', however a working knowledge helps in diagnostics and improvements.

HDFS

Design Assumptions

- □ Hardware failure is the norm.
- □ Streaming data access.
- U Write once, read many times.
- □ High throughput, not low latency.
- □ Large datasets.

Characteristics:

- Performs best with modest number of large files
- Optimized for streaming reads
- Layer on top of native file system.

HDFS

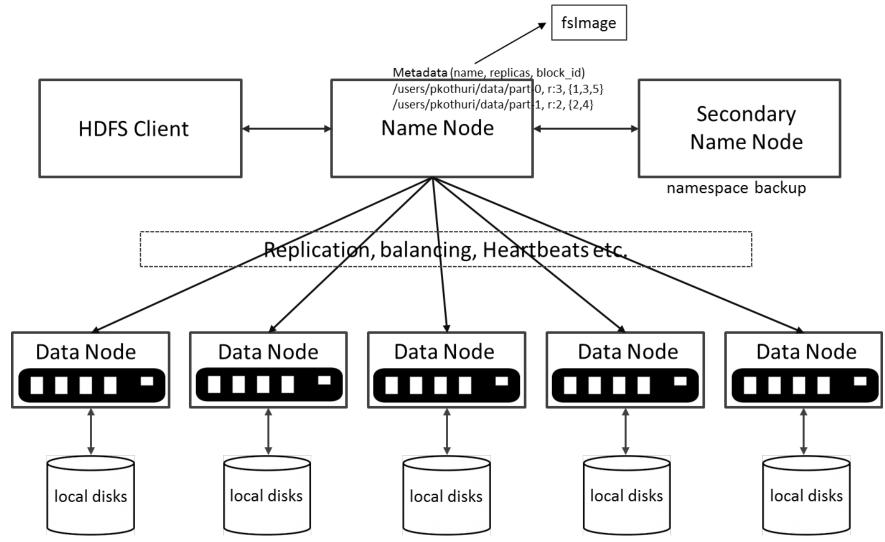
- Data is organized into file and directories.
- □ Files are divided into blocks and distributed to nodes.
- □ Block placement is known at the time of read
 - □ Computation moved to same node.
- □ Replication is used for:
 - Speed
 - □ Fault tolerance
 - □ Self healing.

Components of HDFS

There are two (and a half) types of machines in a HDFS cluster

- <u>NameNode</u> :- is the heart of an HDFS filesystem, it maintains and manages the file system metadata. E.g; what blocks make up a file, and on which datanodes those blocks are stored.
- <u>DataNode</u> :- where HDFS stores the actual data, there are usually quite a few of these.

HDFS Architecture



HDFS – User Commands (dfs)

List directory contents

hdfs dfs -ls hdfs dfs -ls / hdfs dfs -ls -R /var

Display the disk space used by files

hdfs dfs -du /hbase/data/hbase/namespace/ hdfs dfs -du -h /hbase/data/hbase/namespace/ hdfs dfs -du -s /hbase/data/hbase/namespace/

HDFS – User Commands (dfs)

Copy data to HDFS

hdfs dfs -mkdir tdata hdfs dfs -ls hdfs dfs -copyFromLocal tutorials/data/geneva.csv tdata hdfs dfs -ls -R

Copy the file back to local filesystem

cd tutorials/data/ hdfs dfs -copyToLocal tdata/geneva.csv geneva.csv.hdfs md5sum geneva.csv geneva.csv.hdfs

HDFS – User Commands (acls)

List acl for a file

hdfs dfs -getfacl tdata/geneva.csv

List the file statistics – (%r – replication factor)

hdfs dfs -stat "%r" tdata/geneva.csv

Write to hdfs reading from stdin

```
echo "blah blah blah" | hdfs dfs -put - tdataset/tfile.txt
hdfs dfs -ls -R
hdfs dfs -cat tdataset/tfile.txt
```

Goals of HDFS

- Very Large Distributed File System
 - 10K nodes, 100 million files, 10 PB
- Assumes Commodity Hardware
 - Files are replicated to handle hardware failure
 - Detect failures and recovers from them

Optimized for Batch Processing

Data locations exposed so that computations can move to where data resides

- Provides very high aggregate bandwidth
- User Space, runs on heterogeneous OS

Distributed File System

- Single Namespace for entire cluster
- Data Coherency
 - Write-once-read-many access model
 - Client can only append to existing files
- Files are broken up into blocks
 - Typically 128 MB block size
 - Each block replicated on multiple DataNodes
- Intelligent Client
 - Client can find location of blocks
 - Client accesses data directly from DataNode

NameNode Metadata

- Meta-data in Memory
 - The entire metadata is in main memory
 - No demand paging of meta-data
- Types of Metadata
 - List of files
 - List of Blocks for each file
 - List of DataNodes for each block
 - File attributes, e.g creation time, replication factor
- A Transaction Log
 - Records file creations, file deletions. etc

DataNode

A Block Server

- Stores data in the local file system (e.g. ext3)
- Stores meta-data of a block (e.g. CRC)
- Serves data and meta-data to Clients

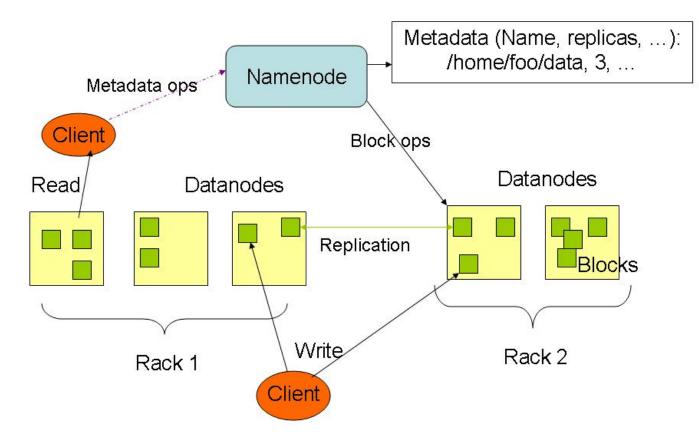
Block Report

- Periodically sends a report of all existing blocks to the NameNode

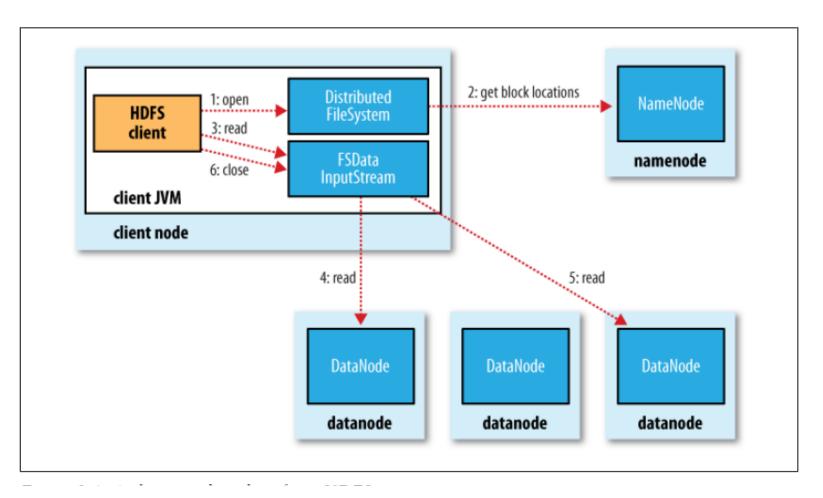
Facilitates Pipelining of Data

- Forwards data to other specified DataNodes

HDFS Architecture

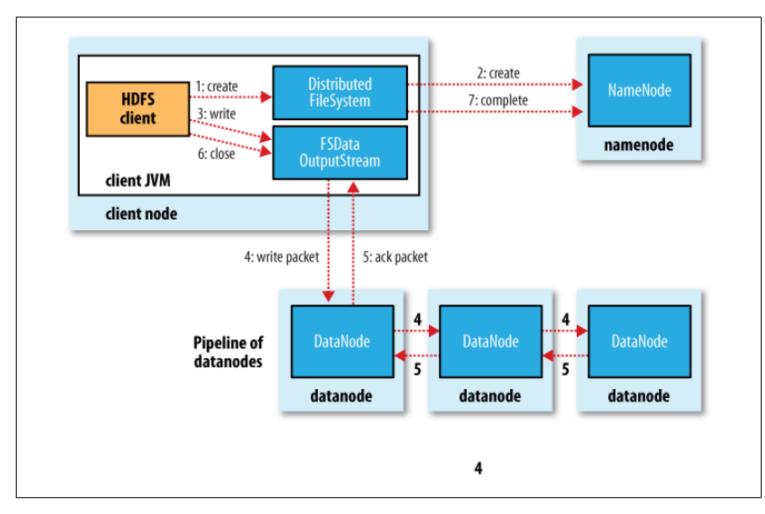


HDFS read client



Source: Hadoop: The Definitive Guide

HDFS write Client



Source: Hadoop: The Definitive Guide

Block Placement

- Current Strategy
 - -- One replica on local node
 - -- Second replica on a remote rack
 - -- Third replica on same remote rack
 - -- Additional replicas are randomly placed
- Clients read from nearest replica
- Would like to make this policy pluggable

NameNode Failure

- A single point of failure
- Transaction Log stored in multiple directories
 - A directory on the local file system
 - A directory on a remote file system (NFS/CIFS)

Data Pipelining

- Client retrieves a list of DataNodes on which to place replicas of a block
- Client writes block to the first DataNode
- The first DataNode forwards the data to the next DataNode in the Pipeline
- Usually, when all replicas are written, the Client moves on to write the next block in file

Conclusion:

- We have seen:
 - The structure of HDFS.
 - The shell commands.
 - The architecture of HDFS system.
 - Internal functioning of HDFS.

MAPREDUCE INTERNALS

Hadoop Map Reduce

D Provides:

□ Automatic parallelization and Distribution

□ Fault Tolerance

□ Methods for interfacing with HDFS for colocation of computation and storage of output.

□ Status and Monitoring tools

API in Java

□ Ability to define the mapper and reducer in many languages through Hadoop streaming.

Wordcount program

import java.io.IOException; import java.util.StringTokenizer;

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.io.IntWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Job;

import org.apache.hadoop.mapreduce.Mapper;

import org.apache.hadoop.mapreduce.Reducer;

import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;

import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

Wordcount program - Main

public class WordCount {

```
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
Job job = Job.getInstance(conf, "word count");
job.setJarByClass(WordCount.class);
job.setMapperClass(TokenizerMapper.class);
job.setCombinerClass(IntSumReducer.class);
job.setReducerClass(IntSumReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
} }
```

Wordcount program - Mapper

```
public static class TokenizerMapper extends Mapper<Object, Text, Text,
IntWritable>{
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
```

```
public void map(Object key, Text value, Context context )
throws IOException, InterruptedException {
   StringTokenizer itr = new StringTokenizer(value.toString());
   while (itr.hasMoreTokens()) {
      word.set(itr.nextToken()); context.write(word, one);
   }
}
```

Wordcount program - Reducer

```
public static class IntSumReducer extends
Reducer<Text,IntWritable,Text,IntWritable> {
  private IntWritable result = new IntWritable();
```

```
public void reduce(Text key, Iterable<IntWritable> values, Context
context )
throws IOException, InterruptedException {
    int sum = 0;
    for (IntWritable val : values) {
        sum += val.get();
    }
    result.set(sum);
    context.write(key, result);
}
```

Wordcount program - running

export JAVA_HOME=[Java home directory]

bin/hadoop com.sun.tools.javac.Main WordCount.java

jar cf wc.jar WordCount*.class

bin/hadoop jar wc.jar WordCount [Input path] [Output path]

Wordcount in python

Mapper.py

```
#!/usr/bin/env python
import sys
# input comes from STDIN (standard input)
for line in sys.stdin:
    # remove leading and trailing whitespace
    line = line.strip()
    # split the line into words
   words = line.split()
    # increase counters
   for word in words:
        # write the results to STDOUT (standard output);
        # what we output here will be the input for the
        # Reduce step, i.e. the input for reducer.py
        #
        # tab-delimited: the trivial word count is 1
        print '%s\t%s' % (word, 1)
```

Wordcount in python

Reducer.py

#!/usr/bin/env python

from operator import itemgetter import sys

maps words to their counts
word2count = {}

input comes from STDIN
for line in sys.stdin:
 # remove leading and trailing whitespace
 line = line.strip()

```
# parse the input we got from mapper.py
word, count = line.split('\t', 1)
# convert count (currently a string) to int
try:
    count = int(count)
    word2count[word] = word2count.get(word, 0) + count
except ValueError:
        # count was not a number, so silently
        # ignore/discard this line
        pass
```

```
# sort the words lexigraphically;
#
# this step is NOT required, we just do it so that our
# final output will look more like the official Hadoop
# word count examples
sorted_word2count = sorted(word2count.items(), key=itemgetter(0))
# write the results to STDOUT (standard output)
for word, count in sorted_word2count:
```

```
print '%s\t%s'% (word, count)
```

Execution code

bin/hadoop dfs -ls

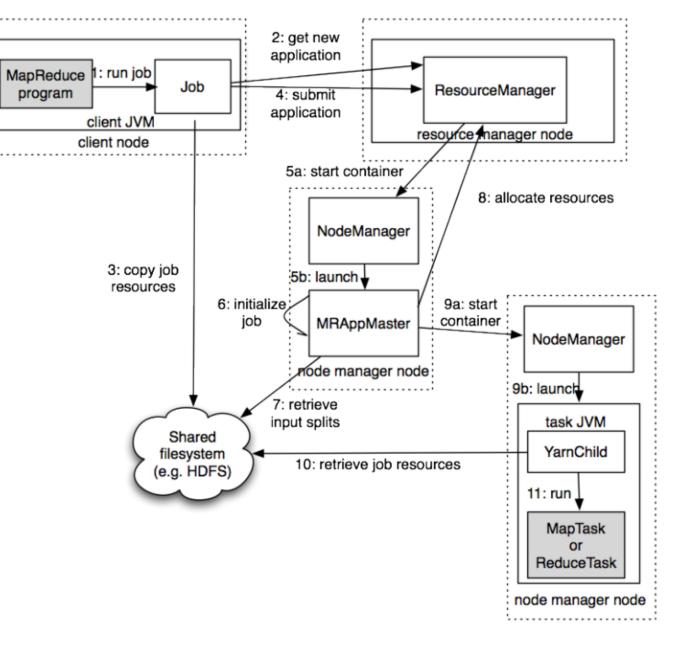
bin/hadoop dfs -copyFromLocal example example

bin/hadoop jar contrib/streaming/hadoop-0.19.2-streaming.jar -file wordcount-py.example/mapper.py -mapper wordcount-py.example/mapper.py -file wordcount-py.example/reducer.py -reducer wordcountpy.example/reducer.py -input example -output java-output

bin/hadoop dfs -cat java-output/part-00000

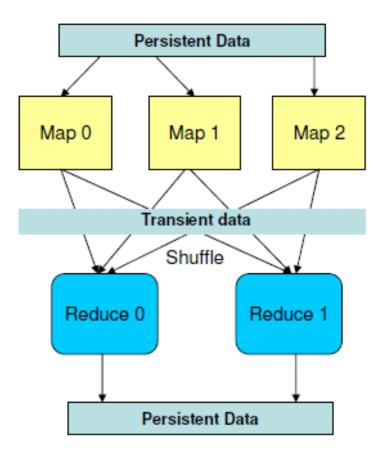
bin/hadoop dfs -copyToLocal java-output/part-00000 java-output-local

Hadoop(v2) MR job

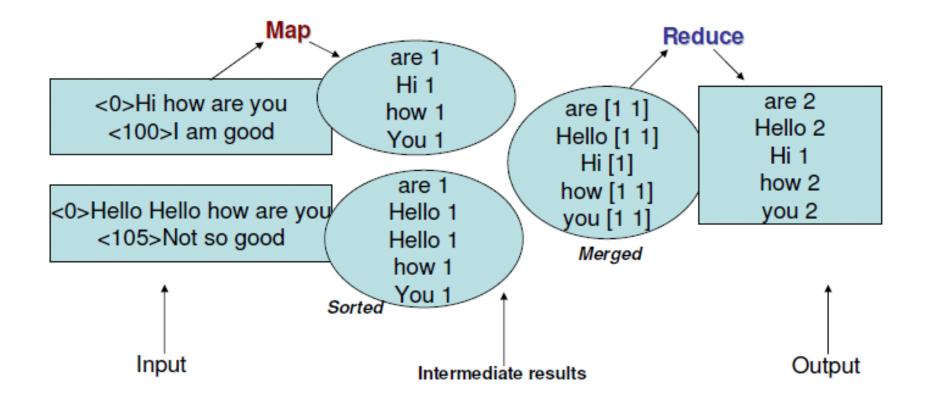


Source: Hadoop: The Definitive Guide

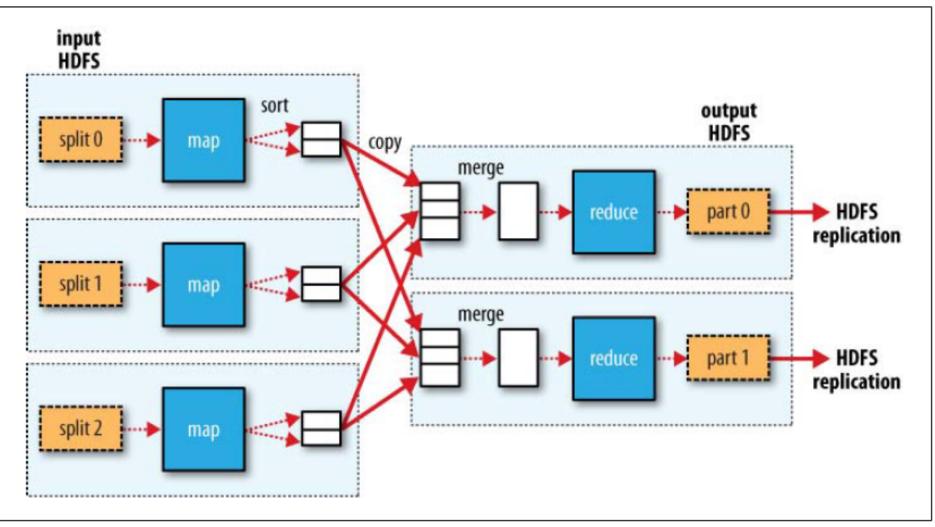
Map Reduce Data Flow



Data: Stream of keys and values

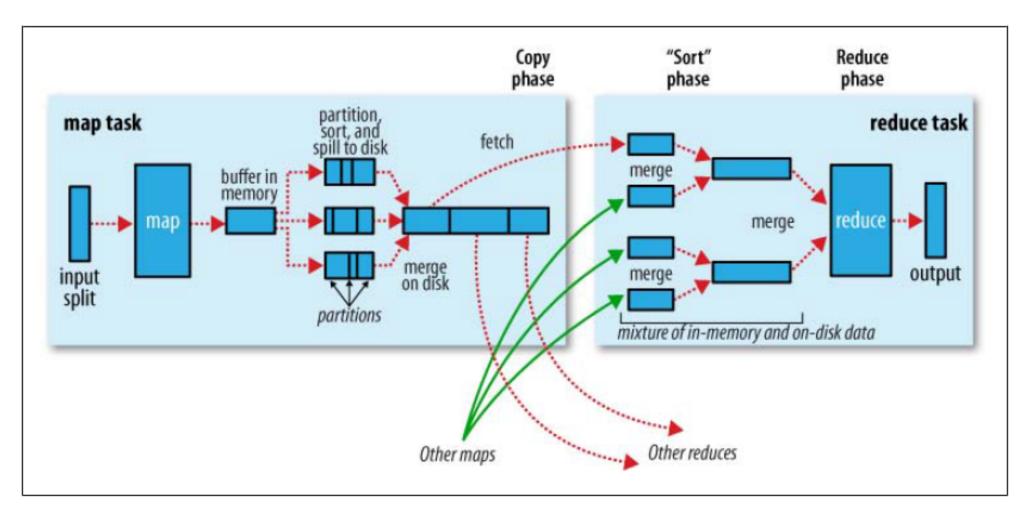


Hadoop MR Data Flow



Source: Hadoop: The Definitive Guide

Shuffle and sort

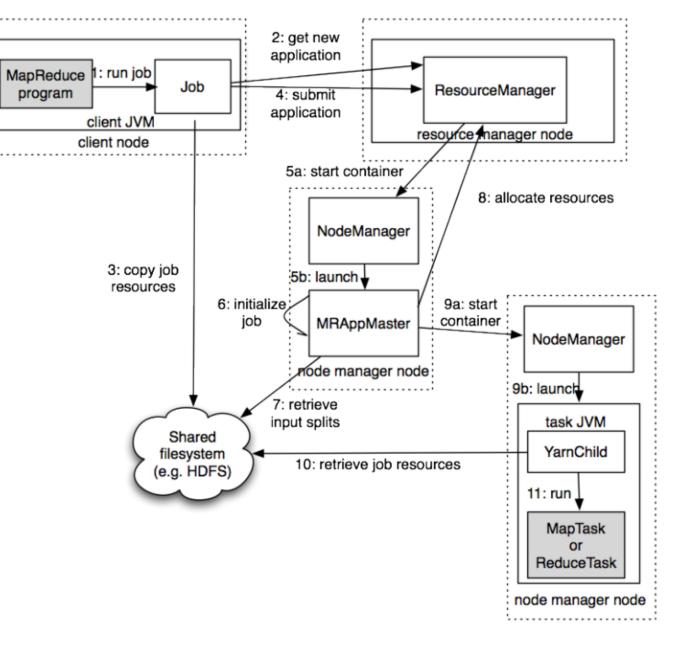


Source: Hadoop: The Definitive Guide

Data Flow

- Input and final output are stored on a distributed file system (FS):
 - Scheduler tries to schedule map tasks "close" to physical storage location of input data
- Intermediate results are stored on local FS of Map workers.
- Output of Reduce workers are stored on a distributed file system.
- Output is often input to another MapReduce task

Hadoop(v2) MR job



Source: Hadoop: The Definitive Guide

Fault tolerance

Comes from scalability and cost effectiveness

HDFS:

Replication

□ Map Reduce

- □ Restarting failed tasks: map and reduce
- □Writing map output to FS
- □ Minimizes re-computation

Coordination: Master

- Master node takes care of coordination:
 - Task status: (idle, in-progress, completed)
 - Idle tasks get scheduled as workers become available
 - When a map task completes, it sends the master the location and sizes of its R intermediate files, one for each reducer
 - Master pushes this info to reducers
- Master pings workers periodically to detect failures

Failures

Task failure

Task has failed – report error to node manager, appmaster, client.

Task not responsive, JVM failure – Node manager restarts tasks.

□ Application Master failure

□ Application master sends heartbeats to resource manager.

□ If not received, the resource manager retrieves job history of the run tasks.

□ Node manager failure

Dealing with Failures

• Map worker failure

- Map tasks completed or in-progress at worker are reset to idle
- Reduce workers are notified when task is rescheduled on another worker

Reduce worker failure

- Only in-progress tasks are reset to idle
- Reduce task is restarted

Master failure

- MapReduce task is aborted and client is notified

How many Map and Reduce jobs?

- *M* map tasks, *R* reduce tasks
- Rule of a thumb:
 - Make M much larger than the number of nodes in the cluster
 - One DFS chunk per map is common
 - Improves dynamic load balancing and speeds up recovery from worker failures
- Usually *R* is smaller than *M*
 - Because output is spread across R files

Task Granularity & Pipelining

- Fine granularity tasks: map tasks >> machines
 - Minimizes time for fault recovery
 - Can do pipeline shuffling with map execution
 - Better dynamic load balancing

Process	Time>										
User Program	MapReduce()				wait						
Master	Assign tasks to worker machines										
Worker 1		Map 1	Map 3								
Worker 2		Map 2									
Worker 3			Read 1.1		Read 1.3		Read 1.2	,	Redu	ice 1	
Worker 4			Read 2.1				Read 2.2	Read	d 2.3	Reduc	ce 2

Refinements: Backup Tasks

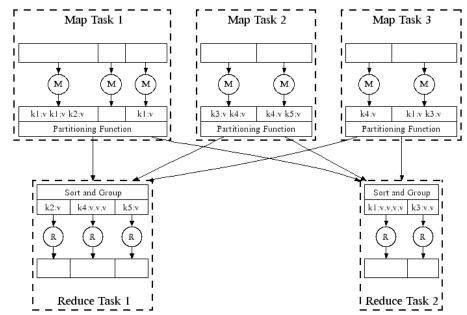
- Problem
 - Slow workers significantly lengthen the job completion time:
 - Other jobs on the machine
 - Bad disks
 - Weird things

Solution

- Near end of phase, spawn backup copies of tasks
 - Whichever one finishes first "wins"
- Effect
 - Dramatically shortens job completion time

Refinement: Combiners

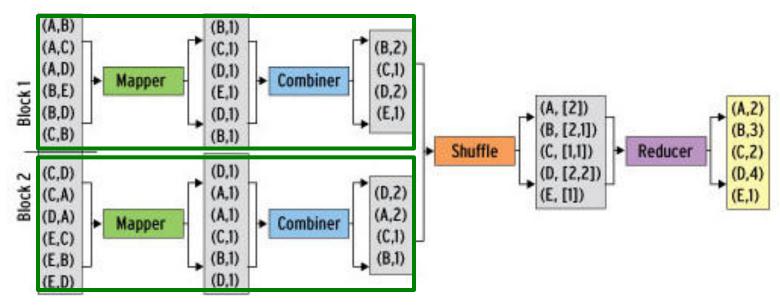
- Often a Map task will produce many pairs of the form (k,v₁), (k,v₂),
 ... for the same key k
 - E.g., popular words in the word count example
- Can save network time by pre-aggregating values in the mapper:
 - combine(k, list(v₁)) \rightarrow v₂
 - Combiner is usually same as the reduce function
- Works only if reduce function is commutative and associative



Refinement: Combiners

• Back to our word counting example:

 Combiner combines the values of all keys of a single mapper (single machine):



- Much less data needs to be copied and shuffled!

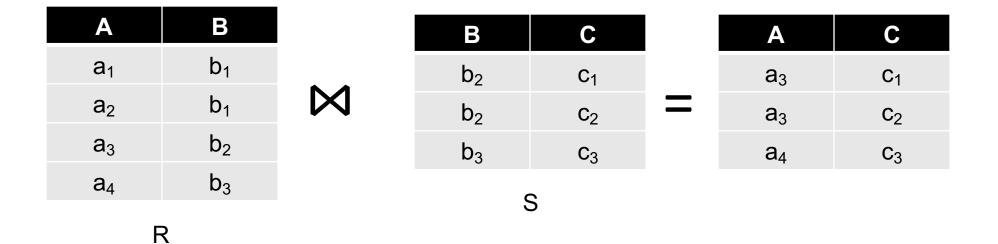
Refinement: Partition Function

Want to control how keys get partitioned

- Inputs to map tasks are created by contiguous splits of input file
- Reduce needs to ensure that records with the same intermediate key end up at the same worker
- System uses a default partition function:
 - hash(key) mod R
- Sometimes useful to override the hash function:
 - E.g., hash(hostname(URL)) mod R ensures URLs from a host end up in the same output file

Example: Join By Map-Reduce

- Compute the natural join *R*(*A*,*B*) ⋈ *S*(*B*,*C*)
- *R* and *S* are each stored in files
- Tuples are pairs (*a*,*b*) or (*b*,*c*)



Map-Reduce Join

- Use a hash function *h* from B-values to 1...k
- A Map process turns:
 - Each input tuple R(a,b) into key-value pair (b,(a,R))
 - Each input tuple S(b,c) into (b,(c,S))
- Map processes send each key-value pair with key b to Reduce process h(b)

– Hadoop does this automatically; just tell it what k is.

• Each **Reduce process** matches all the pairs (b,(a,R)) with all (b,(c,S)) and outputs (a,b,c).

Cost Measures for Algorithms

- In MapReduce we quantify the cost of an algorithm using
- 1. *Communication cost* = total I/O of all processes
- 2. *Elapsed communication cost* = max of I/O along any path
- 3. (*Elapsed*) *computation cost* analogous, but count only running time of processes

Note that here the big-O notation is not the most useful (adding more machines is always an option)

Example: Cost Measures

- For a map-reduce algorithm:
 - Communication cost = input file size + $2 \times$ (sum of the sizes of all files passed from Map processes to Reduce processes) + the sum of the output sizes of the Reduce processes.
 - Elapsed communication cost is the sum of the largest input + output for any map process, plus the same for any reduce process

What Cost Measures Mean

- Either the I/O (communication) or processing (computation) cost dominates
 - Ignore one or the other
- Total cost tells what you pay in rent from your friendly neighborhood cloud
- Elapsed cost is wall-clock time using parallelism

Cost of Map-Reduce Join

- Total communication cost = $O(|R|+|S|+|R \bowtie S|)$
- Elapsed communication cost = O(s)
 - We're going to pick k and the number of Map processes so that the I/O limit s is respected
 - We put a limit *s* on the amount of input or output that any one process can have. *s* could be:
 - What fits in main memory
 - What fits on local disk
- With proper indexes, computation cost is linear in the input + output size
 - So computation cost is like comm. cost

References:

- Jure Leskovec, Anand Rajaraman, Jeff Ullman. Mining of Massive Datasets. 2nd edition. - Cambridge University Press. <u>http://www.mmds.org/</u>
- Tom White. Hadoop: The definitive Guide. Oreilly Press.