CS60050: Machine Learning

RNN, Attention and Transformers

Sourangshu Bhattacharya

Recurrent neural networks

Recurrent neural networks

« Lots of information is sequential

and requires a memory for successful

processing
* Sequences as input, Sequences as
output

Recurrent neural networks(RNNS)
are called recurrent because they
perform same task for every element
of sequence, with output dependent
on previous computations

RNNs have memory that
captures information about
what has been computed so far

RNNSs can make use of information
In arbitrarily long sequences—in
practice they limited to looking
back only few steps

Img Source: http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Topologies of Recurrent Neural Network

one to one one to many many to one many to many many to many

(1) (2) (3) (4) (5)

1) Common Neural Network (e.g. feed forward network)
2) Prediction of future states base on single observation
3) Sentiment classification

4) Machine translation

5) Simultaneous interpretation

Language Model

 Compute the probability of a sentence

e Useful in machine translation

— Word ordering: p(the cat is small) > p(small the cat is)

— Word choice: p(walking home after school) > p(walking
house after school)

Recurrent Neural Network

Next word prediction

label
prediction
RNN
Cell
had a

inputs

council

Vs

general

Recurrent Neural Network

council -

Next word prediction

VS
37 @ council
Vocabulary
sizevectorof | po1 002 @ .. 065 | .. 0.00
probabilities A
RNN
Cell
-—— --
20 6 33

had a general

Recurrent Neural Network

i ol S

= Recurrent Neural Network have an internal state
= State is passed from input x; t0 X4

Img Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Language Models with RNN

Let x,, x;, X... denote words (input)

Let 0, 0,, 0,... denote the probability of the
sentence(output)

Memory requirement scales nicely (linear with the
number of word embeddings / number of character)

>

A -

b 6 6 & . @

Recurrent Neural Network

output layer

hidden layer

input layer

1.0
2.2
-3.0
41

A

0.5
0.3
-1.0
= 7

0.3
-0.1

»

0.1
0.5
1.9
-11

1.0
0.3
1

0.9
1
0
0
0

0.
0
1
0
0

O

W_hh

0.2
-1.5
-0.1

2.2

I W _hy

-0.3
0.9
Y8

W xh

0
0
0
1
0

®

Recurrent neural networks

RNN being unrolled (or
unfolded) into full network

=
—>» O
“ +

Unrolling: write out CT)
network for complete " _w "
seguence S =)

Image credits: Nature

:X T}q

RNN: How to learn?

1.0
2.2
-3.0
41

output layer

0.5
0.3
-1.0
= 7

hidden layer | -0.1

0.1
0.5
1.9
-11

input layer

0.2
-1.5
-0.1

2.2

I W _hy

W hhl| =03
——aE5
7 3

W xh

0
0
0
1
0

®

Img Source: http://karpathy.github.io/2015/05/21/rnn-effectiveness/

No Magic Involved (in Theory)

You unroll your data in time
You compute the gradients
You use back propagation to train your network

Karpathy presents a Python implementation for Char-RNN
with 112 lines

Training RNNs is hard:

— Inputs from many time steps ago can modify output
— Vanishing / Exploding Gradient Problem

Vanishing gradients can be solved by Gated-RNNs like Long-
Short-Term-Memory (LSTM) Models
— LSTM became popular in NLP in 2015

Vanishing and exploding gradients

» For training RNNs, calculate gradients for U, 1 . [. 1 . I’— ‘
V, W —ok for V but for W and U ... _.@ @
» Gradients for W: H H H H {
3C3 o 8£3 (903 353 o i 8£3 803 383 ask 0 o " " "
OW — Qog Ds3 OW — dos 0sg Os, OW
» More generally: g—fL — tff : 3‘22': : gi”":; e —ag‘:stl = <1
<1 <1 <1

» Gradient contributions from far away steps become zero: state at those steps
doesn't contribute to what you are learning

L;— Loss, U, V, W — Parameters, S, - states

Vanishing and exploding gradients

—-- @0@

Unfold

(OO

Vanishing and exploding gradients

wr @ @ @ O O O O

Hidden
Layer

Inputs .

Time 1

2 3 4 5 6 7

Heatmap

Long Short Term Memory [Hochreiter and
Schmidhuber, 1997]

LSTMSs designed to combat vanishing gradients through gating
mechanism

How LSTM calculates hidden state st

o(z:U" + si_1W*)
o(x Ul + s W)
o(xU° + 51 W?)

g = tanh(z;UY + s;_1 W)

f

0

¢t =c—10f+goi

s; = tanh(c;) o0

Long-Short-Term Memory (LSTM)
bt O h) (h%
l T T I I

9 e S

* Long-term dependencies:
| grew up in France and lived there until | was 18. Therefore |
speak fluent ???

* Presented (vanilla) RNN is unable to learn long term dependencies
— Issue: More recent input data has higher influence on the output

* Long-Short-Term Memory (LSTM) models solves this problem

€5
:
S

Img Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTM Model

® ® ®
|) |
X — = >
A | bedetll] A
P >
I I
&) (x) &)
= The LSTM model implements a forget-gate and an add-
gate

* The models learns when to forget something and when to
update internal storage

Img Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTM Model

)
®
v ()

= Core: Cell-state C (a vector of certain size)
» The model has the ability to remove or add information
using Gates

Forget-Gate

Jit =0 (Wg-lhi—1, 2] + by)

= Sigmoid function ¢ output a value between 0 and 1
= The output is point-wise multiplied with the cell state C, ,

= Interpretation: ——
= 0: Let nothing through %
= 1: Let everything through

= Example: When we see a new subject, forget gender of old subject

Set-Gate

_ it =0 (Wi-lhi—1, 2] + bi)
C, = tanh(We¢-[hi—1, 2] + bo)

ht—1

Ty

= Compute i;which cells we want to update and to which
degree (c: 0... 1)
= Compute the new cell value using the tanh function

Update Internal Cell State

va

—

P
()
(5 >
Cy

Cy= fixCy_q +iy x C

.

Forget state cells

Y}

Update state cells

Compute Output h,

fllt A

Gnh> or =0 (W, [hi_1,m¢] + bo)
04 Q)
h; = o4 x tanh (C})

hi—1

i

= We use the updated cell state C, to compute the output
= \We might not need the complete cell state as output
= Compute o,, defining how relevant each cell is for the output

= Pointwise multiply o, with tanh(C))

= Cell state C, and output h, is passed to the next time step

Img Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Machine translation

02.09.2014 | Computer Science
Department | UKP Lab - Prof. Dr. Iryna
Gurevych | Nils Reimers |

Encoder-decoder Models
(Sutskever et al. 2014)

Encoder e .
| kono elga k|ra|

Jﬁ 5@5

f argmax argmax argmax argmax argmax
Y

I hate thls mowe </s>

Decoder

Sentence Representations

Problem!

“You can’t cram the meaning of a whole %&!$ing
sentence into a single $&!*ing vector!”
— Ray Mooney

- But what if we could use multiple vectors, based on
the length of the sentence.

this Is an example >

this Is an example >

Attention - Basic Idea
(Bahdanau et al. 2015)

- Encode each word in the sentence into a vector

- When decoding, perform a linear combination of
these vectors, weighted by “attention weights”

- Use this combination in picking the next word

Calculating Attention (1)

- Use “query” vector (decoder state) and “key” vectors (all encoder states)

- For each query-key pair, calculate weight

- Normalize to add to one using softmax

kono e|a | klral

| hate

]
>
‘h_d

~ ~ ~

\ NN N
ai=2.1 az:-O.l‘a?,:O.B as=-1.0

softmax

01=0.76 a2=0.08 ‘0(320. 13 a4=0.03

Calculating Attention (2)

- Combine together value vectors (usually encoder
states, like key vectors) by taking the weighted sum

kono _eiga _ga _ Kial

Value
\ectors

- Use this in any part of the model you like

A Graphical Example

HWVWLAFZy 280 L TwkEHET £ 3 5,

HNEEEE EEEEEEEEE
you AN EEEEEEEEE
recommend [N HEEEEEEEE

could

an AN N EEE
inexpensive [NSNS I R R
restaurant [HlEEEEEEEEEN

il ENENENEEEE

<s> B[]]

Attention Score Functions (1)

- (Is the query and K is the key

- Multi-layer Perceptron (Bahdanau et al. 2015)

a(q, k) = witanh(W,|q; k)

- Flexible, often very good with large data

- Bilinear (Luong et al. 2015)

a(q, k)= q "Wk

Attention Score Functions (2)

- Dot Product (Luong et al. 2015)

a(q.k) = qTk

- No parameters! But requires sizes to be the same.

- Scaled Dot Product (Vaswani et al. 2017)

- Problem: scale of dot product increases as dimensions get
larger

- Fix: scale by size of the vector

Transformer: “Attention is All

You Need”
(Vaswani et al. 2017)

Propblem: RNN constrained by
previous timestep computatlon

O)
1 I
= A
® & - ©

@—>—@

O,
:
b

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Target is to Improve the perfomrance and
get rid of sequential computation

Summary of the

“Transformer"
(Vaswani et al. 2017)

- A sequence-to-
sequence model based
entirely on attention

- Strong results on
standard WMT datasets

. Fast: only matrix
multiplications

Qutput
Probabilities
)

| Softmax |

~

| Linear |}

¥ 3

(shifted right)

r N
| Add & Norm Je=
Feec
Forward
-~
~ | “\ [Add & Norm Je—
—~LAdd & Nom] Multi-Head
Feed Attention
Forward T ;7 Nx
'
Nx [Add & Norm]-1—‘
~—»| Acd &lNorm | Maskod
Multi-Head Multi-Head
Attention Attention
Positional ®—O Positional
Encoding A (R_® Encoding
Inpurt Output
Embedding Embkedding
Inpuls Outputs

Attention Tricks

- Self Attention: Each layer combines words with
others

- Multi-headed Attention: 8 attention heads learned

Independently

- Normalized Dot-product Attention: Remove bias
In dot product when using large networks

- Positional Encodings: Make sure that even if we
don’t have RNN, can still distinguish positions

Self-Attention: focus on the
iImportant parts.

Model: Encoder

N=6

All Layersoutput size 512
Embedding

Positional Encoding

Notice the Residual
connection

Multi-head Attention
LayerNorm(x +Sublayer(x))
Position wise feedforward

s

" N
Add & Norm
Feed
Forward
A
N
N Add & Norm
Multi-Head
Attention
A ¢
e 3
Positional A
Encoding

Input

Embedding

T

Inputs

Model:
Encoder

N=6
All Layersoutput size 512
Embedding

Positional Encoding

Multi-head Attention
LayerNorm(x +Sublayer(x))
e Position wise feed forward

PE (10s,2i) = sin(pos/ 100002/ Aioder)
PE(pos,2i+1) — COS (pOS/lOOOOZi/dmodel)

f)
4 ™
Add & Norm
[Feed I
F
or\:zard .
N
N Add & Norm
Multi-Head
Attention
A ¢
e 3
Positional A
Encoding

Input
Embedding

T

Inputs

Model:
Encoder

N=6

All Layersoutput size 512
Embedding

Positional Encoding

Notice the Residual connection
Multi-head Attention
LayerNorm(x +Sublayer(x))
Position wise feed forward

7

Add & Norm

|

Feed
Forward

A

Add & Norm

|

Multi-Head
Attention

|

.

SO, Y

\.

J

Positional o
Encoding ®_<f

Input
Embedding

T

Inputs

Model:
Decoder

N=6

All Layersoutput size 512
Embedding

Positional Encoding

Notice the Residual connection
Multi-head Attention
LayerNorm(x +Sublayer(x))
Position wise feed forward

e?J

Oo\Z); —
().7 2521 o2

Output
Probabilities

t
| Softmax |}
| Linear |}

)

()
| Add & Norm Je=~

Feed
Forward

J

| Add & Norm Je=

Multi-Head
Attention

417 7’ N
FJ

LAdd & Norm Je=

Masked
Multi-Head
Attention

A__ ¢t
_)

e..

Output
Embedding

!

Outputs
(shifted right)

Positional
Encoding

Model:
Complete

Output

Probabilities

t
|l Softmax
| Linear
g S
| Add & Norm Je=
Feed
Forward
r \ | Add & Norm Je=
—>{_Add 8 Norm J Multi-Head
Feed Attention
Forward |\ 7 7 7 N x
| | J—~
Add & Norm
N x I
~>| Add & Norm | TR
Multi-Head Multi-Head
Attention Attention
‘ A ’ \ A }
e J _ 45,
Positional Positional
; 1a GL- .
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

Multi-Head Attention

|

Linear

]

Concat

J— i}

AL
Scaled Dot-Product .
Attention
L | L

Linear Linear Linear

V K Q

MultiHead(Q, K, V) = Concat(head, ..., heady,)W
where head; = Attention(QW,*, KW/, VW)

Scaled Dot-Product Attention

MatMul |

t

[softvax |

t

[Mask (opt.) |

Attention(Q, K, V') = softmax(

A

QK"
vy

1%

Q,K\V

"encoder-decoder attention" layers, the queries (Q) come from
the previous decoder layer, and the memory keys (K) and values

(V) come from the output of the encoder.”
e Otherwise: all three come from previous layer (Hidden state)

Output
Probabilities

[}
(¢)
Add & Norm
Feed
Forward
~ 1 ~\ (CAdd & Norm z
golaticy Multi-Head
Feed ;
Forward Nx
-—]
s A orm
f—>| Add & Norm | VR
Multi-Head Multi-Head
Attention Attention
At At
k_ J \ _))
Positional Positional
Encoding D @ i
g Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

http://www.reddit.com/r/MachineLearning/comments/6kc7py/d_where_does_the_query_keys_and_values_come_from/

Transformer Block

b
A
.)
fTran sformer (Layer Normalize)
Block %>
Residual
connection [Feedforward Layer] z = LayerNorm(x + SelfAttention(x))
1 y = LayerNorm(z+ FFN(z))
(Layer Normalize)
>
Residual
connection [Self-Attention Layer]
- ‘ J
CIE T)

IDTICMIRY A transformer block showing all the layers.

Complexity

Table 1: Maximum path lengths, per-layer complexity and minimum number of sequential operations
for different layer types. n is the sequence length, d is the representation dimension, k is the kernel
size of convolutions and r the size of the neighborhood in restricted self-attention.

Layer Type Complexity per Layer Sequential Maximum Path Length
Operations

Self-Attention O(n? - d) O(1) O(1)

Recurrent O(n - d?) O(n) O(n)

Convolutional O(k-n-d?) O(1) O(logy(n))

Self-Attention (restricted) O(r-n-d) O(1) O(n/r)

Position-wise Feed-Forward network

Output
Probabilities

Add & Norm
Feed
Forward
Add & Norm
e Mult-Head
Attention
t) Nx
N Add & Norm
[Add & Norm]
Add & Norm Masked
Multi-Head Multi-Head
Attention Attention
——t L
] J U —,
Positional ® ¢ Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

FFN(%) - maX(O, ZL'Wl ~+ b1>W2 + bg

ENCODER #2

ENCODER #1

Transformer with 2 stacked encoders and
decoders

...

: : (Softmax)
(,>(Add & Normalize) 2

!)) i (Linear)
(Feed Forvard) _____ (Feed Forvae) =TT

: . Add & Normalize .) :*(s AT e .)
G e) i G (Gastronan)
(+C P rT— N i Bl e)
(reedforward) (Feed Ft)rward) e >(*Encoder-DecoderAttentio:)
= T | —
: T 1 :) ' 1

A T) L)

.
............................
POSITIONAL
ENCODING

X1 EI:I:I:' X2I:D:I:]

Thinking Machines

How is the decoder different?

(Y
Feed Forward
EN A - >
/ | | ‘\ ‘
d R e B
Feed Forward Encoder-Decoder Attention
Y y _ _J
& EEE— A
r : i %
Self-Attention Self-Attention
\ J) . J

T t

Masked Self-attention for decoder (to avoid
seeing the future tokens)

q1ok1 —00 | —00 | —00 | —00

q2+k1|g2°k2| —oc0 | —o0 | —o0

N |g3+k1|g3:k2|q3+k3| —c0 | —o0

q4+k1|g4+-k2 |q4+k3 [gd+kd| —oco

a5+k1 |g5+k2 |g5+k3 | q5+k4| g5+k5

N

I PPOICRIIR] The N x N QKT matrix showing the g; - k; values, with the upper-triangle
portion of the comparisons matrix zeroed out (set to —oo, which the softmax will turn to
Zero).

Encoder-Decoder Attention

The output of the top

Decoding time step:(1)2 3 4 5 6 OUTPUT encoder is transformed into
a set of attention vectors K
and V.
f
s R
Kancies:, | Maricio (Linear + Softmax) These are to be u_Sed by
i O i i O i s each decoder in Its
@ ﬁ T ‘encoder-decoder
(ENCODER J \-»[DECODER] attention” layer which
) [} helps the decoder focus on
(ENCODER J (DECODER J appropriate places in the
- ~ input sequence:
E'://IVI?EIBPF:'I:]/I% 150 0 R i 1 O 1 2 | It creates its Queries matrix
SIGNAL from the layer below it, and

takes the Keys and Values
matrix from the output of
the encoder stack.

EMBEDDINGS [[T [11

INPUT Je Suls étudiant

Decoding

Decoding time step: 1 2@4 56 OUTPUT | am
t
()
KDHC(iL‘J Ve:wu‘:c (Linear + Softmax)
ENCODERS DECODERS }
o ~J
EMBEDDING * * ? *
WITH TIME L1 (IIT] CITT] 1T
SIGNAL
EMBEDDINGS [| (117
INPUT Je suis étudiant PREVIOUS

OUTPUTS

The output of each step
Is fed to the bottom
decoder in the next time
step, and the decoders
bubble up their decoding
results just like the
encoders did.

And just like we did with
the encoder inputs, we
embed and add
positional encoding to
those decoder inputs to
indicate the position of
each word.

Converting decoder stack output to words

Which word in our vocabulary
is associated with this index?

Get the index of the cell

with the highest value
(argmax)

log_probs

logits

Decoder stack output

am

.. vocab_size

)

.. vocab_size

C

)

@ 12345
‘.
(Softmax
3
Lttty il
@ 12345
7\
Linear
4
LI 1]

That's the job of the final
Linear layer which is
followed by a Softmax
Layer.

The Linear layer is a simple
fully connected neural
network that projects the
vector produced by the
stack of decoders, into a
much, much larger vector
called a logits vector.

The softmax layer then turns
those scores into
probabilities. The cell with
the highest probability is
chosen.

Training

® Data sets:

o WMT 2014 English-German: 4.5 million sentences pairs
with 37K tokens.
o WMT 2014 English-French: 36M sentences, 32K tokens.

® Hardware:

o 8 Nvidia P100 GPus (Base model 12 hours, big model 3.5
days)

http://www.prioritiesusa.org/recommendations-for-sports-training/

Results

Table 2: The Transformer achieves better BLEU scores than previous state-of-the-art models on the
English-to-German and English-to-French newstest2014 tests at a fraction of the training cost.

- BLEU Training Cost (FLOPs)
oo EN-DE EN-FR EN-DE EN-FR

ByteNet [17] 23.75

Deep-Att + PosUnk [37] 39.2 1.0 -10%°
GNMT + RL [36] 24.6 39.92 2.3-10'9 1.4.10%°
ConvS2S [9] 25.16 40.46 9.6-10'® 1.5-10%°
MOoE [31] 26.03 40.56 2.0-1019 1.2.102%°
Deep-Att + PosUnk Ensemble [37] 40.4 8.0 - 10%°
GNMT + RL Ensemble [36] 26.30 41.16 1.8-10%° 1.1-10%
ConvS2S Ensemble [9] 26.36 41.29 Tr-10% 19.70%
Transformer (base model) 273 38.1 3.3.10'8

Transformer (big) 28.4 41.0 2.83-10%°

It It

is is
Results
this this
spirit spirit
that that
a a
majority majority
of of
American American
governments governments
have have
passed passed
new new
laws laws
since since
2009 2009
making making

the the
registration registration
or or
voting voting
process process
more
difficult

<EOS>

R e S u I t S The The The The

Law Law Law
will will will - will
never never never never
be be be \ ~.be
perfect perfect perfect perfect
but but but . \ but
its P its \ its
.ﬁplication —_— application application application
should should should should
be be be -be
just just just just
this this this -~ this

is is is = [
what what what

we we we -we

are are are -are
missing missing missing - missing

my my my e my
opinion opinion opinion = - = Opinion
e S oS L——__ o>

<pad> <pad>

<pad> <pad>

Conclusion

Deep learning approaches — Powerful mechanisms for introducing non-
linearity in learning

Learning using backpropagation
Embeddings for word representations
Sequence Labelling using RNNs
LSTMSs, GRUs are special kind of RNNs
CNN:s for text and Image recognition.

References

Deep Learning for NLP - Nils Reimers.
https://github.com/UKPLab/deeplearning4nlp-
tutorial/tree/master/2017-07 Seminar

CS231n: Convolutional Neural Networks for Visual
Recognition. Andrej Karpathy
http://cs231n.github.io/convolutional-networks/

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Neural Networks for Information Retrieval. SIGIR 2017
Tutorial http://nn4ir.com/

CSE 446 - Machine Learning - Spring 2015,
University of Washington. Pedro Domingos.
https://courses.cs.washington.edu/courses/cse446/15sp/

https://www.ukp.tu-darmstadt.de/people/doctoral-researchers/nils-reimers/
https://github.com/UKPLab/deeplearning4nlp-tutorial/tree/master/2017-07_Seminar
https://github.com/UKPLab/deeplearning4nlp-tutorial/tree/master/2017-07_Seminar
http://cs231n.stanford.edu/
http://cs231n.stanford.edu/
http://cs.stanford.edu/people/karpathy/
http://cs231n.github.io/convolutional-networks/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://nn4ir.com/
http://www.cs.washington.edu/homes/pedrod/
https://courses.cs.washington.edu/courses/cse446/15sp/

	Slide 1: CS60050: Machine Learning RNN, Attention and Transformers
	Slide 2: Recurrent neural networks
	Slide 3
	Slide 4: Topologies of Recurrent Neural Network
	Slide 5: Language Model
	Slide 6: Recurrent Neural Network
	Slide 7: Recurrent Neural Network
	Slide 8: Recurrent Neural Network
	Slide 9: Language Models with RNN
	Slide 10: Recurrent Neural Network
	Slide 11
	Slide 12: RNN: How to learn?
	Slide 13: No Magic Involved (in Theory)
	Slide 14
	Slide 15
	Slide 16
	Slide 17: Long Short Term Memory [Hochreiter and Schmidhuber, 1997]
	Slide 18: Long-Short-Term Memory (LSTM)
	Slide 19: LSTM Model
	Slide 20: LSTM Model
	Slide 21: Forget-Gate
	Slide 22: Set-Gate
	Slide 23: Update Internal Cell State
	Slide 24: Compute Output ht
	Slide 25: Machine translation
	Slide 26: Encoder-decoder Models
	Slide 27: Sentence Representations
	Slide 28: Attention - Basic Idea
	Slide 29: Calculating Attention (1)
	Slide 30: Calculating Attention (2)
	Slide 31: A Graphical Example
	Slide 32: Attention Score Functions (1)
	Slide 33: Attention Score Functions (2)
	Slide 43: Transformer: “Attention is All You Need” (Vaswani et al. 2017)
	Slide 44: Problem: RNN constrained by previous timestep computation
	Slide 45: Target is to Improve the perfomrance and get rid of sequential computation
	Slide 46: Summary of the “Transformer"
	Slide 47: Attention Tricks
	Slide 48: Self-Attention: focus on the important parts.
	Slide 49: Model: Encoder
	Slide 50: Model: Encoder
	Slide 51: Model: Encoder
	Slide 52: Model: Decoder
	Slide 53: Model: Complete
	Slide 54
	Slide 55
	Slide 56: Q,K,V
	Slide 57
	Slide 58: Complexity
	Slide 59: Position-wise Feed-Forward network
	Slide 60: Transformer with 2 stacked encoders and decoders
	Slide 61: How is the decoder different?
	Slide 62: Masked Self-attention for decoder (to avoid seeing the future tokens)
	Slide 63: Encoder-Decoder Attention
	Slide 64: Decoding
	Slide 65: Converting decoder stack output to words
	Slide 66: Training
	Slide 67: Results
	Slide 68: Results
	Slide 69: Results
	Slide 70: Conclusion
	Slide 71: References

