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Recurrent neural networks



Recurrent neural networks

• Lots of information is sequential 

and requires a memory for successful  

processing

• Sequences as input, sequences as  

output

• Recurrent neural networks(RNNs) 

are  called recurrent because they 

perform  same task for every element 

of  sequence, with output dependent 

on  previous computations

• RNNs have memory that 

captures  information about 

what has been  computed so far

• RNNs can make use of information 

in  arbitrarily long sequences – in 

practice  they limited to looking 

back only few  steps

Img Source: http://karpathy.github.io/2015/05/21/rnn-effectiveness/



Topologies of Recurrent Neural Network

(1)                              (2)                             (3)                                   (4)                   (5)         

1) Common Neural Network (e.g. feed forward network)

2) Prediction of future states base on single observation 

3) Sentiment classification

4) Machine translation

5) Simultaneous interpretation



Language Model

• Compute the probability of a sentence

• Useful in machine translation
– Word ordering: p(the cat is small) > p(small the cat is)

– Word choice: p(walking home after school) > p(walking 

house after school)
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Recurrent Neural Network

Img Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

▪ Recurrent Neural Network have an internal state 

▪ State is passed from input xt to xt+1

ot o0
o
1

o2 ot



Language Models with RNN

• Let x0, x1, x2… denote words (input)

• Let o0, o1, o2… denote the probability of the 
sentence(output)

• Memory requirement scales nicely (linear with the 
number of word embeddings / number of character)

ot o0 o1 o2 ot
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• RNN being unrolled (or 

unfolded) into  full network

• Unrolling: write out 

network for  complete

sequence

• Image credits: Nature

Recurrent neural networks



Img Source: http://karpathy.github.io/2015/05/21/rnn-effectiveness/

RNN: How to learn?
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No Magic Involved (in Theory)

• You unroll your data in time

• You compute the gradients

• You use back propagation to train your network

• Karpathy presents a Python implementation for Char-RNN 
with 112 lines

• Training RNNs is hard:
– Inputs from many time steps ago can modify output

– Vanishing / Exploding Gradient Problem

• Vanishing gradients can be solved by Gated-RNNs like Long-
Short-Term-Memory (LSTM) Models
– LSTM became popular in NLP in 2015



Vanishing and exploding gradients

Li – Loss, U, V, W – Parameters, Si - states



Vanishing and exploding gradients



Heatmap

Vanishing and exploding gradients



LSTMs designed to combat vanishing gradients through gating 

mechanism

How LSTM calculates hidden state st

Long Short Term Memory [Hochreiter and 
Schmidhuber, 1997]

32



Long-Short-Term Memory (LSTM)

• Long-term dependencies: 
 I grew up in France and lived there until I was 18. Therefore I
 speak fluent ???

• Presented (vanilla) RNN is unable to learn long term dependencies

– Issue: More recent input data has higher influence on the output

• Long-Short-Term Memory (LSTM) models solves this problem

Img Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/



LSTM Model

Img Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

▪ The LSTM model implements a forget-gate and an add-

gate

▪ The models learns when to forget something and when to 

update internal storage



▪ Core: Cell-state C (a vector of certain size)

▪ The model has the ability to remove or add information 

using Gates

LSTM Model



Forget-Gate

▪ Sigmoid function σ  output a value between 0 and 1

▪ The output is point-wise multiplied with the cell state Ct-1

▪ Interpretation:

▪ 0: Let nothing through 

▪ 1: Let everything through

▪ Example: When we see a new subject, forget gender of old subject



Set-Gate

▪ Compute it which cells we want to update and to which 

degree (σ: 0 … 1)

▪ Compute the new cell value using the tanh function 



Update Internal Cell State

Forget state cells

Update state cells



Compute Output ht

Img Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

▪ We use the updated cell state Ct to compute the output

▪ We might not need the complete cell state as output

▪ Compute ot, defining how relevant each cell is for the output

▪ Pointwise multiply ot with tanh(Ct)

▪ Cell state Ct and output ht is passed to the next time step



Machine translation

02.09.2014   |   Computer Science 
Department   |   UKP Lab  - Prof. Dr. Iryna 

Gurevych   |   Nils Reimers   | 



LSTM LSTM LSTM LSTM LSTM

</s>

LSTM LSTM LSTM LSTM

argmax argmax argmax

</s>

Encoder-decoder Models

I hate this movie

kono

(Sutskever et al. 2014)

eiga ga kirai

this movie

Encoder

argmax argmax

I hate

Decoder



Sentence Representations

• But what if we could use multiple vectors, based on  

the length of the sentence.

this is an example

this is an example

“You can’t cram the meaning of a whole %&!$ing  

sentence into a single $&!*ing vector!”
— Ray Mooney

Problem!



Attention - Basic Idea

(Bahdanau et al. 2015)

• Encode each word in the sentence into a vector

• When decoding, perform a linear combination of  

these vectors, weighted by “attention weights”

• Use this combination in picking the next word



Calculating Attention (1)

Query Vector

• Use “query” vector (decoder state) and “key” vectors (all encoder states)

• For each query-key pair, calculate weight

• Normalize to add to one using softmax

kono eiga ga kirai

Key  

Vectors

I hate

a1=2.1 a2=-0.1 a3=0.3 a4=-1.0

softmax

α1=0.76 α2=0.08 α3=0.13 α4=0.03



Calculating Attention (2)
• Combine together value vectors (usually encoder  

states, like key vectors) by taking the weighted sum

kono eiga ga kirai

Value  

Vectors

* * *
α1=0.76 α2=0.08 α3=0.13

*
α4=0.03

• Use this in any part of the model you like



A Graphical Example



Attention Score Functions (1)

• q is the query and k is the key

• Multi-layer Perceptron (Bahdanau et al. 2015)

•

• Flexible, often very good with large data

Bilinear (Luong et al. 2015)

a(q, k)= q|W k



Attention Score Functions (2)

•

•

Dot Product (Luong et al. 2015)

a(q, k) =q|k

• No parameters! But requires sizes to be the same.

Scaled Dot Product (Vaswani et al. 2017)

• Problem: scale of dot product increases as dimensions get  

larger

• Fix: scale by size of the vector

q|k
a(q, k) = p

| k |



Transformer:  “Attention is All 
You Need”

(Vaswani et al. 2017)



Problem: RNN constrained by
previous  timestep computation

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

http://colah.github.io/posts/2015-08-Understanding-LSTMs/


Target is to Improve the perfomrance and  
get rid of sequential computation



• A sequence-to-

sequence model based  
entirely on attention

• Strong results on  

standard WMT datasets

• Fast: only matrix  

multiplications

Summary of the  
“Transformer"

(Vaswani et al. 2017)



Attention Tricks

• Self Attention: Each layer combines words with  

others

• Multi-headed Attention: 8 attention heads learned  

independently

• Normalized Dot-product Attention: Remove bias  

in dot product when using large networks

• Positional Encodings: Make sure that even if we  

don’t have RNN, can still distinguish positions



Self-Attention: focus on the 
important parts.

https://deepage.net/deep_learning/2017/03/03/attention-augmented-recurrent-neural-networks.html#attentionインターフェース



Model: Encoder

● N=6

● N=6
● All Layersoutput size 512

● Embedding

● Positional Encoding
● Notice the Residual

connection

● Multi-head Attention

● LayerNorm(x +Sublayer(x))

● Position wise feed forward

https://arxiv.org/abs/1706.03762
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Model: 
Encoder

● N=6
● All Layersoutput size 512
● Embedding
● Positional Encoding
● Notice the Residual connection 
● Multi-head Attentiond Attention
● LayerNorm(x +Sublayer(x))
● Position wise feed forward
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Model:
Decoder

● N=6
● All Layersoutput size 512
● Embedding
● Positional Encoding
● Notice the Residual connection
● Multi-head Attention
● LayerNorm(x +Sublayer(x))
● Position wise feed forward
● Softmax

https://arxiv.org/abs/1706.03762



Model:
Complete

https://arxiv.org/abs/1706.03762



https://arxiv.org/abs/1706.03762



https://arxiv.org/abs/1706.03762



Q,K,V
● "encoder-decoder attention" layers, the queries (Q) come from  

the previous decoder layer, and the memory keys (K) and values

(V) come from the output of the encoder.”
● Otherwise: all three come from previous layer ( Hidden state )

https://www.reddit.com/r/MachineLearning/comments/6kc7py/d_where_does_the_query_keys_and_values_come_from/ 

https://arxiv.org/abs/1706.03762

http://www.reddit.com/r/MachineLearning/comments/6kc7py/d_where_does_the_query_keys_and_values_come_from/


Transformer Block



Complexity

https://arxiv.org/abs/1706.03762



Position-wise Feed-Forward network

https://arxiv.org/abs/1706.03762



Transformer with 2 stacked encoders and
decoders



How is the decoder different?



Masked Self-attention for decoder (to avoid
seeing the future tokens)



Encoder-Decoder Attention

The output of the top

encoder is transformed into

a set of attention vectors K

and V.

These are to be used by 

each decoder in its 

“encoder-decoder 

attention” layer which 

helps the decoder focus on 

appropriate places in the 

input sequence:

It creates its Queries matrix

from the layer below it, and

takes the Keys and Values

matrix from the output of

the encoder stack.



Decoding

The output of each step 

is fed to the bottom 

decoder in the next time 
step, and the decoders 

bubble up their decoding 

results just like the 

encoders did.

And just like we did with 

the encoder inputs, we 
embed and add 

positional encoding to 

those decoder inputs to 

indicate the position of 

each word.



Converting decoder stack output to words

That’s the job of the final

Linear layer which is

followed by a Softmax

Layer.

The Linear layer is a simple

connected neuralfully 

network 

vector produced by

that projects the

the

stack of decoders, into a

much, much larger vector

called a logits vector.

The softmax layer then turns

those scores into

probabilities. The cell with

the highest probability is

chosen.



Training

● Data sets:
○ WMT 2014 English-German: 4.5 million sentences pairs

with  37K tokens.

○ WMT 2014 English-French: 36M sentences, 32K tokens.

● Hardware:
○ 8 Nvidia P100 GPus (Base model 12 hours, big model 3.5

days)

http://www.prioritiesusa.org/recommendations-for-sports-training/

http://www.prioritiesusa.org/recommendations-for-sports-training/


Results

https://arxiv.org/abs/1706.03762



Results

https://arxiv.org/abs/1706.03762



Results

https://arxiv.org/abs/1706.03762



Conclusion

• Deep learning approaches – Powerful mechanisms for introducing non-

linearity in learning

• Learning using backpropagation

• Embeddings for word representations

• Sequence Labelling using RNNs 

• LSTMs, GRUs are special kind of RNNs

• CNNs for text and Image recognition.
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