
CS60050: Machine Learning

RNN, Attention and Transformers

Sourangshu Bhattacharya

Recurrent neural networks

Recurrent neural networks

• Lots of information is sequential

and requires a memory for successful

processing

• Sequences as input, sequences as

output

• Recurrent neural networks(RNNs)

are called recurrent because they

perform same task for every element

of sequence, with output dependent

on previous computations

• RNNs have memory that

captures information about

what has been computed so far

• RNNs can make use of information

in arbitrarily long sequences – in

practice they limited to looking

back only few steps

Img Source: http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Topologies of Recurrent Neural Network

(1) (2) (3) (4) (5)

1) Common Neural Network (e.g. feed forward network)

2) Prediction of future states base on single observation

3) Sentiment classification

4) Machine translation

5) Simultaneous interpretation

Language Model

• Compute the probability of a sentence

• Useful in machine translation
– Word ordering: p(the cat is small) > p(small the cat is)

– Word choice: p(walking home after school) > p(walking

house after school)

Recurrent Neural Network

RNN

Cell

Next word prediction

Recurrent Neural Network

RNN

Cell

Next word prediction

Vocabulary
size vector of
probabilities

Recurrent Neural Network

Img Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

▪ Recurrent Neural Network have an internal state

▪ State is passed from input xt to xt+1

ot o0
o
1

o2 ot

Language Models with RNN

• Let x0, x1, x2… denote words (input)

• Let o0, o1, o2… denote the probability of the
sentence(output)

• Memory requirement scales nicely (linear with the
number of word embeddings / number of character)

ot o0 o1 o2 ot

Recurrent Neural Network
o0 o1 o2

o
3

X
0

X
1

X
2

X
3

• RNN being unrolled (or

unfolded) into full network

• Unrolling: write out

network for complete

sequence

• Image credits: Nature

Recurrent neural networks

Img Source: http://karpathy.github.io/2015/05/21/rnn-effectiveness/

RNN: How to learn?

o0 o1 o2
o
3

X
0

X
1

X
2

X
3

No Magic Involved (in Theory)

• You unroll your data in time

• You compute the gradients

• You use back propagation to train your network

• Karpathy presents a Python implementation for Char-RNN
with 112 lines

• Training RNNs is hard:
– Inputs from many time steps ago can modify output

– Vanishing / Exploding Gradient Problem

• Vanishing gradients can be solved by Gated-RNNs like Long-
Short-Term-Memory (LSTM) Models
– LSTM became popular in NLP in 2015

Vanishing and exploding gradients

Li – Loss, U, V, W – Parameters, Si - states

Vanishing and exploding gradients

Heatmap

Vanishing and exploding gradients

LSTMs designed to combat vanishing gradients through gating

mechanism

How LSTM calculates hidden state st

Long Short Term Memory [Hochreiter and
Schmidhuber, 1997]

32

Long-Short-Term Memory (LSTM)

• Long-term dependencies:
 I grew up in France and lived there until I was 18. Therefore I
 speak fluent ???

• Presented (vanilla) RNN is unable to learn long term dependencies

– Issue: More recent input data has higher influence on the output

• Long-Short-Term Memory (LSTM) models solves this problem

Img Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTM Model

Img Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

▪ The LSTM model implements a forget-gate and an add-

gate

▪ The models learns when to forget something and when to

update internal storage

▪ Core: Cell-state C (a vector of certain size)

▪ The model has the ability to remove or add information

using Gates

LSTM Model

Forget-Gate

▪ Sigmoid function σ output a value between 0 and 1

▪ The output is point-wise multiplied with the cell state Ct-1

▪ Interpretation:

▪ 0: Let nothing through

▪ 1: Let everything through

▪ Example: When we see a new subject, forget gender of old subject

Set-Gate

▪ Compute it which cells we want to update and to which

degree (σ: 0 … 1)

▪ Compute the new cell value using the tanh function

Update Internal Cell State

Forget state cells

Update state cells

Compute Output ht

Img Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

▪ We use the updated cell state Ct to compute the output

▪ We might not need the complete cell state as output

▪ Compute ot, defining how relevant each cell is for the output

▪ Pointwise multiply ot with tanh(Ct)

▪ Cell state Ct and output ht is passed to the next time step

Machine translation

02.09.2014 | Computer Science
Department | UKP Lab - Prof. Dr. Iryna

Gurevych | Nils Reimers |

LSTM LSTM LSTM LSTM LSTM

</s>

LSTM LSTM LSTM LSTM

argmax argmax argmax

</s>

Encoder-decoder Models

I hate this movie

kono

(Sutskever et al. 2014)

eiga ga kirai

this movie

Encoder

argmax argmax

I hate

Decoder

Sentence Representations

• But what if we could use multiple vectors, based on

the length of the sentence.

this is an example

this is an example

“You can’t cram the meaning of a whole %&!$ing

sentence into a single $&!*ing vector!”
— Ray Mooney

Problem!

Attention - Basic Idea

(Bahdanau et al. 2015)

• Encode each word in the sentence into a vector

• When decoding, perform a linear combination of

these vectors, weighted by “attention weights”

• Use this combination in picking the next word

Calculating Attention (1)

Query Vector

• Use “query” vector (decoder state) and “key” vectors (all encoder states)

• For each query-key pair, calculate weight

• Normalize to add to one using softmax

kono eiga ga kirai

Key

Vectors

I hate

a1=2.1 a2=-0.1 a3=0.3 a4=-1.0

softmax

α1=0.76 α2=0.08 α3=0.13 α4=0.03

Calculating Attention (2)
• Combine together value vectors (usually encoder

states, like key vectors) by taking the weighted sum

kono eiga ga kirai

Value

Vectors

* * *
α1=0.76 α2=0.08 α3=0.13

*
α4=0.03

• Use this in any part of the model you like

A Graphical Example

Attention Score Functions (1)

• q is the query and k is the key

• Multi-layer Perceptron (Bahdanau et al. 2015)

•

• Flexible, often very good with large data

Bilinear (Luong et al. 2015)

a(q, k)= q|W k

Attention Score Functions (2)

•

•

Dot Product (Luong et al. 2015)

a(q, k) =q|k

• No parameters! But requires sizes to be the same.

Scaled Dot Product (Vaswani et al. 2017)

• Problem: scale of dot product increases as dimensions get

larger

• Fix: scale by size of the vector

q|k
a(q, k) = p

| k |

Transformer: “Attention is All
You Need”

(Vaswani et al. 2017)

Problem: RNN constrained by
previous timestep computation

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Target is to Improve the perfomrance and
get rid of sequential computation

• A sequence-to-

sequence model based
entirely on attention

• Strong results on

standard WMT datasets

• Fast: only matrix

multiplications

Summary of the
“Transformer"

(Vaswani et al. 2017)

Attention Tricks

• Self Attention: Each layer combines words with

others

• Multi-headed Attention: 8 attention heads learned

independently

• Normalized Dot-product Attention: Remove bias

in dot product when using large networks

• Positional Encodings: Make sure that even if we

don’t have RNN, can still distinguish positions

Self-Attention: focus on the
important parts.

https://deepage.net/deep_learning/2017/03/03/attention-augmented-recurrent-neural-networks.html#attentionインターフェース

Model: Encoder

● N=6

● N=6
● All Layersoutput size 512

● Embedding

● Positional Encoding
● Notice the Residual

connection

● Multi-head Attention

● LayerNorm(x +Sublayer(x))

● Position wise feed forward

https://arxiv.org/abs/1706.03762

Model:
Encoder

● N=6
● All Layersoutput size 512
● Embedding
● Positional Encoding
● Notice the Residual connection
● Multi-head Attention
● LayerNorm(x +Sublayer(x))
● Position wise feed forward

https://arxiv.org/abs/1706.03762

Model:
Encoder

● N=6
● All Layersoutput size 512
● Embedding
● Positional Encoding
● Notice the Residual connection
● Multi-head Attentiond Attention
● LayerNorm(x +Sublayer(x))
● Position wise feed forward

https://arxiv.org/abs/1706.03762

Model:
Decoder

● N=6
● All Layersoutput size 512
● Embedding
● Positional Encoding
● Notice the Residual connection
● Multi-head Attention
● LayerNorm(x +Sublayer(x))
● Position wise feed forward
● Softmax

https://arxiv.org/abs/1706.03762

Model:
Complete

https://arxiv.org/abs/1706.03762

https://arxiv.org/abs/1706.03762

https://arxiv.org/abs/1706.03762

Q,K,V
● "encoder-decoder attention" layers, the queries (Q) come from

the previous decoder layer, and the memory keys (K) and values

(V) come from the output of the encoder.”
● Otherwise: all three come from previous layer (Hidden state)

https://www.reddit.com/r/MachineLearning/comments/6kc7py/d_where_does_the_query_keys_and_values_come_from/

https://arxiv.org/abs/1706.03762

http://www.reddit.com/r/MachineLearning/comments/6kc7py/d_where_does_the_query_keys_and_values_come_from/

Transformer Block

Complexity

https://arxiv.org/abs/1706.03762

Position-wise Feed-Forward network

https://arxiv.org/abs/1706.03762

Transformer with 2 stacked encoders and
decoders

How is the decoder different?

Masked Self-attention for decoder (to avoid
seeing the future tokens)

Encoder-Decoder Attention

The output of the top

encoder is transformed into

a set of attention vectors K

and V.

These are to be used by

each decoder in its

“encoder-decoder

attention” layer which

helps the decoder focus on

appropriate places in the

input sequence:

It creates its Queries matrix

from the layer below it, and

takes the Keys and Values

matrix from the output of

the encoder stack.

Decoding

The output of each step

is fed to the bottom

decoder in the next time
step, and the decoders

bubble up their decoding

results just like the

encoders did.

And just like we did with

the encoder inputs, we
embed and add

positional encoding to

those decoder inputs to

indicate the position of

each word.

Converting decoder stack output to words

That’s the job of the final

Linear layer which is

followed by a Softmax

Layer.

The Linear layer is a simple

connected neuralfully

network

vector produced by

that projects the

the

stack of decoders, into a

much, much larger vector

called a logits vector.

The softmax layer then turns

those scores into

probabilities. The cell with

the highest probability is

chosen.

Training

● Data sets:
○ WMT 2014 English-German: 4.5 million sentences pairs

with 37K tokens.

○ WMT 2014 English-French: 36M sentences, 32K tokens.

● Hardware:
○ 8 Nvidia P100 GPus (Base model 12 hours, big model 3.5

days)

http://www.prioritiesusa.org/recommendations-for-sports-training/

http://www.prioritiesusa.org/recommendations-for-sports-training/

Results

https://arxiv.org/abs/1706.03762

Results

https://arxiv.org/abs/1706.03762

Results

https://arxiv.org/abs/1706.03762

Conclusion

• Deep learning approaches – Powerful mechanisms for introducing non-

linearity in learning

• Learning using backpropagation

• Embeddings for word representations

• Sequence Labelling using RNNs

• LSTMs, GRUs are special kind of RNNs

• CNNs for text and Image recognition.

References

• Deep Learning for NLP - Nils Reimers.
https://github.com/UKPLab/deeplearning4nlp-
tutorial/tree/master/2017-07_Seminar

• CS231n: Convolutional Neural Networks for Visual
Recognition. Andrej Karpathy
http://cs231n.github.io/convolutional-networks/

• http://karpathy.github.io/2015/05/21/rnn-effectiveness/

• Neural Networks for Information Retrieval. SIGIR 2017
Tutorial http://nn4ir.com/

• CSE 446 - Machine Learning - Spring 2015,
University of Washington. Pedro Domingos.
https://courses.cs.washington.edu/courses/cse446/15sp/

https://www.ukp.tu-darmstadt.de/people/doctoral-researchers/nils-reimers/
https://github.com/UKPLab/deeplearning4nlp-tutorial/tree/master/2017-07_Seminar
https://github.com/UKPLab/deeplearning4nlp-tutorial/tree/master/2017-07_Seminar
http://cs231n.stanford.edu/
http://cs231n.stanford.edu/
http://cs.stanford.edu/people/karpathy/
http://cs231n.github.io/convolutional-networks/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://nn4ir.com/
http://www.cs.washington.edu/homes/pedrod/
https://courses.cs.washington.edu/courses/cse446/15sp/

	Slide 1: CS60050: Machine Learning RNN, Attention and Transformers
	Slide 2: Recurrent neural networks
	Slide 3
	Slide 4: Topologies of Recurrent Neural Network
	Slide 5: Language Model
	Slide 6: Recurrent Neural Network
	Slide 7: Recurrent Neural Network
	Slide 8: Recurrent Neural Network
	Slide 9: Language Models with RNN
	Slide 10: Recurrent Neural Network
	Slide 11
	Slide 12: RNN: How to learn?
	Slide 13: No Magic Involved (in Theory)
	Slide 14
	Slide 15
	Slide 16
	Slide 17: Long Short Term Memory [Hochreiter and Schmidhuber, 1997]
	Slide 18: Long-Short-Term Memory (LSTM)
	Slide 19: LSTM Model
	Slide 20: LSTM Model
	Slide 21: Forget-Gate
	Slide 22: Set-Gate
	Slide 23: Update Internal Cell State
	Slide 24: Compute Output ht
	Slide 25: Machine translation
	Slide 26: Encoder-decoder Models
	Slide 27: Sentence Representations
	Slide 28: Attention - Basic Idea
	Slide 29: Calculating Attention (1)
	Slide 30: Calculating Attention (2)
	Slide 31: A Graphical Example
	Slide 32: Attention Score Functions (1)
	Slide 33: Attention Score Functions (2)
	Slide 43: Transformer: “Attention is All You Need” (Vaswani et al. 2017)
	Slide 44: Problem: RNN constrained by previous timestep computation
	Slide 45: Target is to Improve the perfomrance and get rid of sequential computation
	Slide 46: Summary of the “Transformer"
	Slide 47: Attention Tricks
	Slide 48: Self-Attention: focus on the important parts.
	Slide 49: Model: Encoder
	Slide 50: Model: Encoder
	Slide 51: Model: Encoder
	Slide 52: Model: Decoder
	Slide 53: Model: Complete
	Slide 54
	Slide 55
	Slide 56: Q,K,V
	Slide 57
	Slide 58: Complexity
	Slide 59: Position-wise Feed-Forward network
	Slide 60: Transformer with 2 stacked encoders and decoders
	Slide 61: How is the decoder different?
	Slide 62: Masked Self-attention for decoder (to avoid seeing the future tokens)
	Slide 63: Encoder-Decoder Attention
	Slide 64: Decoding
	Slide 65: Converting decoder stack output to words
	Slide 66: Training
	Slide 67: Results
	Slide 68: Results
	Slide 69: Results
	Slide 70: Conclusion
	Slide 71: References

