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Recurrent neural networks



Recurrent neural networks

« Lots of information is sequential

and requires a memory for successful

processing
* Sequences as input, Sequences as
output

Recurrent neural networks(RNNS)
are called recurrent because they
perform same task for every element
of sequence, with output dependent
on previous computations

RNNs have memory that
captures information about
what has been computed so far

RNNSs can make use of information
In arbitrarily long sequences—in
practice they limited to looking
back only few steps

Img Source: http://karpathy.github.io/2015/05/21/rnn-effectiveness/



Topologies of Recurrent Neural Network

one to one one to many many to one many to many many to many

(1) (2) (3) (4) (5)

1) Common Neural Network (e.g. feed forward network)
2) Prediction of future states base on single observation
3) Sentiment classification

4) Machine translation

5) Simultaneous interpretation



Language Model

 Compute the probability of a sentence

e Useful in machine translation

— Word ordering: p(the cat is small) > p(small the cat is)

— Word choice: p(walking home after school) > p(walking
house after school)



Recurrent Neural Network
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Recurrent Neural Network
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Recurrent Neural Network

i ol S

= Recurrent Neural Network have an internal state
= State is passed from input x; t0 X4

Img Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/



Language Models with RNN

Let x,, x;, X... denote words (input)

Let 0, 0,, 0,... denote the probability of the
sentence(output)

Memory requirement scales nicely (linear with the
number of word embeddings / number of character)
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Recurrent Neural Network
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Recurrent neural networks

RNN being unrolled (or
unfolded) into full network
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RNN: How to learn?
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Img Source: http://karpathy.github.io/2015/05/21/rnn-effectiveness/




No Magic Involved (in Theory)

You unroll your data in time
You compute the gradients
You use back propagation to train your network

Karpathy presents a Python implementation for Char-RNN
with 112 lines

Training RNNs is hard:

— Inputs from many time steps ago can modify output
— Vanishing / Exploding Gradient Problem

Vanishing gradients can be solved by Gated-RNNs like Long-
Short-Term-Memory (LSTM) Models
— LSTM became popular in NLP in 2015



Vanishing and exploding gradients

» For training RNNs, calculate gradients for U, 1 . [ . 1 . I’— ‘
V, W —ok for V but for W and U ... _.@ @
» Gradients for W: H H H H {
3C3 o 8£3 (903 353 o i 8£3 803 383 ask 0 o " " "
OW — Qog Ds3 OW — dos 0sg Os, OW
» More generally: g—fL — tff : 3‘22': : gi”":; e —ag‘:stl = <1
<1 <1 <1

» Gradient contributions from far away steps become zero: state at those steps
doesn't contribute to what you are learning

L;— Loss, U, V, W — Parameters, S, - states



Vanishing and exploding gradients
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Vanishing and exploding gradients
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Long Short Term Memory [Hochreiter and
Schmidhuber, 1997]

LSTMSs designed to combat vanishing gradients through gating
mechanism

How LSTM calculates hidden state st

o(z:U" + si_1W*)
o(x Ul + s W)
o(xU° + 51 W?)

g = tanh(z;UY + s;_1 W)
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Long-Short-Term Memory (LSTM)
bt O h) (h%
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* Long-term dependencies:
| grew up in France and lived there until | was 18. Therefore |
speak fluent ???

* Presented (vanilla) RNN is unable to learn long term dependencies
— Issue: More recent input data has higher influence on the output

* Long-Short-Term Memory (LSTM) models solves this problem
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:
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Img Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/



LSTM Model
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= The LSTM model implements a forget-gate and an add-
gate

* The models learns when to forget something and when to
update internal storage

Img Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/



LSTM Model
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= Core: Cell-state C (a vector of certain size)
» The model has the ability to remove or add information
using Gates



Forget-Gate

Jit =0 (Wg-lhi—1, 2] + by)

= Sigmoid function ¢ output a value between 0 and 1
= The output is point-wise multiplied with the cell state C, ,

= Interpretation: ——
= 0: Let nothing through %
= 1: Let everything through

= Example: When we see a new subject, forget gender of old subject



Set-Gate

_ it =0 (Wi-lhi—1, 2] + bi)
C, = tanh(We¢-[hi—1, 2] + bo)

ht—1

Ty

= Compute i;which cells we want to update and to which
degree (c: 0... 1)
= Compute the new cell value using the tanh function



Update Internal Cell State
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Compute Output h,

fllt A

Gnh> or =0 (W, [hi_1,m¢] + bo)
04 Q)
h; = o4 x tanh (C})

hi—1

i

= We use the updated cell state C, to compute the output
= \We might not need the complete cell state as output
= Compute o,, defining how relevant each cell is for the output

= Pointwise multiply o, with tanh(C))

= Cell state C, and output h, is passed to the next time step

Img Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/



Machine translation

02.09.2014 | Computer Science
Department | UKP Lab - Prof. Dr. Iryna
Gurevych | Nils Reimers |



Encoder-decoder Models
(Sutskever et al. 2014)
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Sentence Representations

Problem!

“You can’t cram the meaning of a whole %&!$ing
sentence into a single $&!*ing vector!”
— Ray Mooney

- But what if we could use multiple vectors, based on
the length of the sentence.

this Is an example >

this Is an example >




Attention - Basic Idea
(Bahdanau et al. 2015)

- Encode each word in the sentence into a vector

- When decoding, perform a linear combination of
these vectors, weighted by “attention weights”

- Use this combination in picking the next word



Calculating Attention (1)

- Use “query” vector (decoder state) and “key” vectors (all encoder states)

- For each query-key pair, calculate weight

- Normalize to add to one using softmax
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Calculating Attention (2)

- Combine together value vectors (usually encoder
states, like key vectors) by taking the weighted sum

kono _eiga _ga _ Kial

Value
\ectors

- Use this in any part of the model you like



A Graphical Example
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Attention Score Functions (1)

- ( Is the query and K is the key

- Multi-layer Perceptron (Bahdanau et al. 2015)

a(q, k) = witanh(W,|q; k)

- Flexible, often very good with large data

- Bilinear (Luong et al. 2015)

a(q, k)= q "Wk



Attention Score Functions (2)

- Dot Product (Luong et al. 2015)

a(q.k) = qTk

- No parameters! But requires sizes to be the same.

- Scaled Dot Product (Vaswani et al. 2017)

- Problem: scale of dot product increases as dimensions get
larger

- Fix: scale by size of the vector




Transformer: “Attention is All

You Need”
(Vaswani et al. 2017)



Propblem: RNN constrained by
previous timestep computatlon
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http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Target is to Improve the perfomrance and
get rid of sequential computation




Summary of the

“Transformer"
(Vaswani et al. 2017)

- A sequence-to-
sequence model based
entirely on attention

- Strong results on
standard WMT datasets

. Fast: only matrix
multiplications
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Attention Tricks

- Self Attention: Each layer combines words with
others

- Multi-headed Attention: 8 attention heads learned

Independently

- Normalized Dot-product Attention: Remove bias
In dot product when using large networks

- Positional Encodings: Make sure that even if we
don’t have RNN, can still distinguish positions



Self-Attention: focus on the
iImportant parts.




Model: Encoder
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Model:
Encoder

N=6
All Layersoutput size 512
Embedding

Positional Encoding

Multi-head Attention
LayerNorm(x +Sublayer(x))
e Position wise feed forward
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Model:
Encoder

N=6

All Layersoutput size 512
Embedding

Positional Encoding

Notice the Residual connection
Multi-head Attention
LayerNorm(x +Sublayer(x))
Position wise feed forward
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Model:
Decoder

N=6

All Layersoutput size 512
Embedding

Positional Encoding

Notice the Residual connection
Multi-head Attention
LayerNorm(x +Sublayer(x))
Position wise feed forward
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Model:
Complete
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Multi-Head Attention

|
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]
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MultiHead(Q, K, V) = Concat(head, ..., heady, )W
where head; = Attention(QW,*, KW/, VW)



Scaled Dot-Product Attention
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Q,K\V

"encoder-decoder attention" layers, the queries (Q) come from
the previous decoder layer, and the memory keys (K) and values

(V) come from the output of the encoder.”
e Otherwise: all three come from previous layer ( Hidden state )
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http://www.reddit.com/r/MachineLearning/comments/6kc7py/d_where_does_the_query_keys_and_values_come_from/

Transformer Block

b
A
. )
fTran sformer ( Layer Normalize )
Block %>
Residual
connection [ Feedforward Layer ] z = LayerNorm(x + SelfAttention(x))
1 y = LayerNorm(z+ FFN(z))
( Layer Normalize )
>
Residual
connection [ Self-Attention Layer ]
- ‘ J
CIE T )

IDTICMIRY A transformer block showing all the layers.



Complexity

Table 1: Maximum path lengths, per-layer complexity and minimum number of sequential operations
for different layer types. n is the sequence length, d is the representation dimension, k is the kernel
size of convolutions and r the size of the neighborhood in restricted self-attention.

Layer Type Complexity per Layer  Sequential Maximum Path Length
Operations

Self-Attention O(n? - d) O(1) O(1)

Recurrent O(n - d?) O(n) O(n)

Convolutional O(k-n-d?) O(1) O(logy(n))

Self-Attention (restricted) O(r-n-d) O(1) O(n/r)




Position-wise Feed-Forward network
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ENCODER #2

ENCODER #1

Transformer with 2 stacked encoders and
decoders
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How is the decoder different?
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Masked Self-attention for decoder (to avoid
seeing the future tokens)

q1ok1 —00 | —00 | —00 | —00

q2+k1|g2°k2| —oc0 | —o0 | —o0

N  |g3+k1|g3:k2|q3+k3| —c0 | —o0

q4+k1|g4+-k2 |q4+k3 [gd+kd| —oco

a5+k1 |g5+k2 |g5+k3 | q5+k4| g5+k5

N

I PPOICRIIR]  The N x N QKT matrix showing the g; - k; values, with the upper-triangle
portion of the comparisons matrix zeroed out (set to —oo, which the softmax will turn to
Zero).



Encoder-Decoder Attention

The output of the top

Decoding time step:(1)2 3 4 5 6 OUTPUT encoder is transformed into
a set of attention vectors K
and V.
f
s R
Kancies:, | Maricio ( Linear + Softmax ) These are to be u_Sed by
i O i i O i s each decoder in Its
@ ﬁ T ‘encoder-decoder
( ENCODER J \-»[ DECODER ] attention” layer  which
) [} helps the decoder focus on
( ENCODER J ( DECODER J appropriate places in the
- ~ input sequence:
E'://IVI?EIBPF:'I:]/I% 150 0 R i 1 O 1 2 | It creates its Queries matrix
SIGNAL from the layer below it, and

takes the Keys and Values
matrix from the output of
the encoder stack.
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Decoding

Decoding time step: 1 2@4 56 OUTPUT | am
t
( )
KDHC(iL‘J Ve:wu‘:c ( Linear + Softmax )
ENCODERS DECODERS }
o ~J
EMBEDDING * * ? *
WITH TIME L1 (IIT] CITT] 1T
SIGNAL
EMBEDDINGS [ | (117
INPUT Je suis  étudiant PREVIOUS

OUTPUTS

The output of each step
Is fed to the bottom
decoder in the next time
step, and the decoders
bubble up their decoding
results just like the
encoders did.

And just like we did with
the encoder inputs, we
embed and add
positional encoding to
those decoder inputs to
indicate the position of
each word.



Converting decoder stack output to words

Which word in our vocabulary
is associated with this index?

Get the index of the cell

with the highest value
(argmax)

log_probs

logits

Decoder stack output

am

.. vocab_size
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.. vocab_size
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@ 12345
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( Softmax
3
Lttty il
@ 12345
7\
Linear
4
LI 1]

That's the job of the final
Linear layer which is
followed by a Softmax
Layer.

The Linear layer is a simple
fully  connected  neural
network that projects the
vector produced by the
stack of decoders, into a
much, much larger vector
called a logits vector.

The softmax layer then turns
those scores into
probabilities. The cell with
the highest probability is
chosen.



Training

® Data sets:

o WMT 2014 English-German: 4.5 million sentences pairs
with 37K tokens.
o WMT 2014 English-French: 36M sentences, 32K tokens.

® Hardware:

o 8 Nvidia P100 GPus (Base model 12 hours, big model 3.5
days)



http://www.prioritiesusa.org/recommendations-for-sports-training/

Results

Table 2: The Transformer achieves better BLEU scores than previous state-of-the-art models on the
English-to-German and English-to-French newstest2014 tests at a fraction of the training cost.

- BLEU Training Cost (FLOPs)
oo EN-DE EN-FR EN-DE  EN-FR

ByteNet [17] 23.75

Deep-Att + PosUnk [37] 39.2 1.0 -10%°
GNMT + RL [36] 24.6 39.92 2.3-10'9 1.4.10%°
ConvS2S [9] 25.16  40.46 9.6-10'® 1.5-10%°
MOoE [31] 26.03  40.56 2.0-1019 1.2.102%°
Deep-Att + PosUnk Ensemble [37] 40.4 8.0 - 10%°
GNMT + RL Ensemble [36] 26.30  41.16 1.8-10%°  1.1-10%
ConvS2S Ensemble [9] 26.36  41.29 Tr-10% 19.70%
Transformer (base model) 273 38.1 3.3.10'8

Transformer (big) 28.4 41.0 2.83-10%°




It It

is is
Results
this this
spirit spirit
that that
a a
majority majority
of of
American American
governments governments
have have
passed passed
new new
laws laws
since since
2009 2009
making making

the the
registration registration
or or
voting voting
process process
more
difficult

<EOS>



R e S u I t S The The The The

Law Law Law
will will will - will
never never never never
be be be \ ~.be
perfect perfect perfect perfect
but but but . \ but
its P its \ its
.ﬁplication —_— application application application
should should should should
be be be -be
just just just just
this this this -~ this

is is is = [
what what what

we we we -we

are are are -are
missing missing missing - missing

my my my e my
opinion opinion opinion = - = Opinion
e S oS L——__ o>

<pad> <pad>

<pad> <pad>



Conclusion

Deep learning approaches — Powerful mechanisms for introducing non-
linearity in learning

Learning using backpropagation
Embeddings for word representations
Sequence Labelling using RNNs
LSTMSs, GRUs are special kind of RNNs
CNN:s for text and Image recognition.
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