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Neural Networks



What is a Neuron?

▪ A neuron is a basic processing unit

of a neural network.

▪ Given several inputs: 𝑥1, 𝑥2, 𝑥3, … ∈ ℝ
and several weights: 𝑤1, 𝑤2, 𝑤3, … ∈ ℝ
and a bias value: 𝑏 ∈ ℝ

▪ A neuron produces a single output:

𝑜𝑖 = 𝑠 ෍

𝑖

𝑤𝑖𝑥𝑖 + 𝑏

▪ This sum is called the activation of the neuron: σ𝑖 𝑤𝑖𝑥𝑖 + 𝑏

▪ The function s is called the activation function for the neuron

▪ The weights and bias values are typically initialized randomly and 

learned during training



Activation functions

+1 +1

iniini

g(ini) g(ini)

(a)                                  (b)

(a)is a step function or threshold function

(b)is a sigmoid function 1/(1 + e−x)

Changing the bias weight W0,i moves the threshold location

The purpose of the activation function is to add a non-linear transformation and 

in some cases squash the output to a specified range.



Commonly used  Activation functions



Perceptron



Perceptron: a 1-layer NN

Task: Classification



Perceptron: a 1-layer NN

• Given training data D = { 𝑥𝑖 , 𝑦𝑖 :  1 ≤  𝑖 ≤  𝑛} 

i.i.d. from distribution 𝐷

• Hypothesis 𝑓𝑤(𝑥)  =  𝑤𝑇𝑥

– 𝑦 = +1 if 𝑤𝑇𝑥 >  0

– 𝑦 = -1 if 𝑤𝑇𝑥 ≤  0

• Prediction: 𝑦 =  𝑠𝑖𝑔𝑛( 𝑓𝑤(𝑥) )  =  𝑠𝑖𝑔𝑛(𝑤𝑇𝑥)

– Activation function: step function



Expressiveness of Perceptrons



Multi-layer Perceptrons



Feed Forward Neural
Networks

Many neurons are organized into 

layers. 

Layer zero is input data.

Neurons taking input from the input 

data are called layer one neurons.

Neurons taking input from the 

output of layer 1 neurons, or input 

data are called layer 2 neurons

Layer n neurons: Take input from 

Layer 0 … Layer 𝑛 − 1 neurons. 



Feed forward Neural Network Computation



Hidden-Layer

• The hidden layer represent learned non-

linear combination of input data

• For solving the XOR problem, we need a 

hidden layer
• some neurons in the hidden layer will activate only for some combination of 

input features

• the output layer can represent combination of the activations of the hidden 

neurons 



Solution to the Xor problem



Composition of Transformations



● Each neuron in neural network can be thought of as computing a useful 
representation of its inputs.

● A layer – composed of many neuron can be thought as a full representation 
of the input datapoint.

○ This representation is independent of the other datapoints – hence distributed 
representations.

Distributed feature representation



Example: A useful feature transformation



● Each neuron in neural network can be thought of as computing a useful 
representation of its inputs.

● A layer – composed of many neuron can be thought as a full representation 
of the input datapoint.

○ This representation is independent of the other datapoints – hence distributed 
representations.

● The representations are formed hierarchically in each layer - progressively 
becoming more useful for the end task.

● The neural network can be thought as a composition of such “feature 
encoders”.

Distributed feature representation



Feed forward Neural Network Example

A Toy Neural Network



Feed forward Neural Network Example



Hidden-Layer

• The hidden layer represent learned non-linear combination of 

input data

• For solving the XOR problem, we need a hidden layer
• some neurons in the hidden layer will activate only for some combination of 

input features

• the output layer can represent combination of the activations of the hidden 

neurons 

• Neural network with one hidden layer is a universal 

approximator

– Every function can be modeled as a shallow feed forward network

– Not all functions can be represented efficiently with a single hidden layer 

 we still need deep neural networks



Deep Neural Networks

• Neural networks with more than 2 / 3 / 4 layers are 
considered “Deep”.

– There is no agreement on the threshold.

• Require systematic approach to:

– Train – Backpropagation.

– Design – Modular approach.

– Debug – Issues like vanishing gradient.

• Deeper neural networks have been shown to perform better 
than shallow ones.
– Hierarchical buildup of useful features.



Deep Neural Networks – hierarchical features



Shallow to Deep Neural Networks

• Neural Networks can have several hidden layers

• Initializing the weights randomly and training all layers at 

once does hardly work 

• Instead we train layerwise on unannotated data (a.k.a. pre-

training):

– Train the first hidden layer

– Fix the parameters for the first layer and train the 

second layer.

– Fix the parameters for the first & second layer, train 

the third layer

• After the pre-training, train all layers using your annotated data

• The pre-training on your unannotated data creates a high-level abstractions of the input data

• The final training with annotated data fine tunes all parameters in the network



TRAINING A NEURAL NETWORK



How to learn the weights ?
• Initialise the weights i.e. Wk,j Wj,i  with random values

• With input entries we calculate the predicted output

• We compare the prediction with the true output

• The error is calculated

• The error needs to be sent as feedback for updating the weights



Input
(Feature Vector)

Output
(Label)

• Put in Training inputs, get the output

• Compare output to correct answers: Look at loss function J

• Adjust and repeat!

• Backpropagation tells us how to make a single adjustment using calculus. 

How to Train a Neural Net?



• Gradient Descent!

1. Make prediction

2. Calculate Loss

3. Calculate gradient of the loss function w.r.t. parameters

4. Update parameters by taking a step in the opposite direction

5. Iterate

How to Train a Neural Net?



How to Train a Neural Net?

• Gradient Descent!

1. Make prediction

2. Calculate Loss

3. Calculate gradient of the loss function w.r.t. parameters

4. Update parameters by taking a step in the opposite direction

5. Iterate
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How to Train a Neural Net?

• Gradient Descent!

1. Make prediction

2. Calculate Loss

3. Calculate gradient of the loss function w.r.t. parameters

4. Update parameters by taking a step in the opposite direction

5. Iterate



• How could we change the weights to make our Loss Function lower?

• Think of neural net as a function 𝐹:  𝑋 −>  𝑌

• F is a complex computation involving many weights 𝑊𝑘

• Given the structure, the weights “define” the function F (and therefore 

define our model)

• Loss Function is 𝐽(𝑦, 𝐹(𝑥))

How to Train a Neural Net?



• Get
𝜕𝐽

𝜕𝑊𝑘
 for every weight in the network.

• This tells us what direction to adjust each Wk if we want to lower our loss 

function.

• Make an adjustment and repeat!

How to Train a Neural Net?
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𝜕𝐽

𝜕𝑊(2)
= ( ො𝑦 − 𝑦) ⋅ 𝑊 3 ⋅ 𝜎′ 𝑧(3) ⋅ 𝑎(2)

𝜕𝐽

𝜕𝑊(1)
= ො𝑦 − 𝑦 ⋅ 𝑊 3 ⋅ 𝜎′ 𝑧(3) ⋅ 𝑊 2 ⋅ 𝜎′ 𝑧 2 ⋅ 𝑋

𝜕𝐽

𝜕𝑊(3)
= ( ො𝑦 − 𝑦) ⋅ 𝑎(3)

• Recall that: 𝜎′ 𝑧  = 𝜎(𝑧)(1 − 𝜎(𝑧)) 

• Though they appear complex, above are easy to compute! 

Backpropagation Formula



How to Train a Neural Net?

• Gradient Descent!

1. Make prediction

2. Calculate Loss

3. Calculate gradient of the loss function w.r.t. parameters

4. Update parameters by taking a step in the opposite direction

                         a. 𝑊𝑡+1 = 𝑊𝑡 − 𝜂𝑡 ൗ𝜕𝐽 𝐹𝑤 𝑥
𝜕𝑊

5.    Iterate



Going from Shallow to Deep Neural Networks
• Neural Networks can have several hidden layers

• Initializing the weights randomly and training all 
layers at once does hardly work 

• Instead we train layerwise on unannotated data 
(a.k.a. pre-training):

– Train the first hidden layer

– Fix the parameters for the first layer and train the 

second layer.

– Fix the parameters for the first & second layer, train the 

third layer

• After the pre-training, train all layers using your annotated data

• The pre-training on your unannotated data creates a high-level 

abstractions of the input data

• The final training with annotated data fine tunes all parameters in the 

network









Computational Graph

Definition: a data structure for storing gradients of variables used 
in computations.

● Node v represents variable
○ Stores value
○ Gradient
○ The function that created the node

● Directed edge (u,v) represents the partial derivative of u w.r.t. v

● To compute the gradient dL/dv, find the unique path from L to v 
and multiply the edge weights.



Backpropagation for neural nets

Given softmax activation, L2 loss, a point (x1, x2, x3, y) = (0. 1, 0.15, 0.2, 1), 

compute the gradient



Backpropagation for neural nets: forward pass



Backpropagation for neural nets: backward pass



Computation Graphs



CONVOLUTIONAL NEURAL 
NETWORKS



Motivation – Image Data

• So far, the structure of our neural network treats all inputs 

interchangeably.

• No relationships between the individual inputs

• Just an ordered set of variables

• We want to incorporate domain knowledge into the architecture of 

a Neural Network.



Motivation

• Image data has important structures, such as;

• ”Topology” of pixels

• Translation invariance

• Issues of lighting and contrast

• Knowledge of human visual system

• Nearby pixels tend to have similar values

• Edges and shapes

• Scale Invariance – objects may appear at different sizes in the 

image.



Motivation – Image Data

• Fully connected would require a vast number of parameters

• MNIST images are small (32 x 32 pixels) and in grayscale

• Color images are more typically at least (200 x 200) pixels x 3 

color channels (RGB) = 120,000 values.

• A single fully connected layer would require (200x200x3)2 = 

14,400,000,000 weights!

• Variance (in terms of bias-variance) would be too high

• So we introduce “bias” by structuring the network to look for certain 

kinds of patterns



Motivation

• Features need to be “built up”

• Edges -> shapes -> relations between shapes

• Textures

• Cat = two eyes in certain relation to one another  + cat fur texture.

• Eyes = dark circle (pupil) inside another circle.

• Circle = particular combination of edge detectors.

• Fur = edges in certain pattern.



Kernels

• A kernel is a grid of weights “overlaid” on image, centered on one 

pixel

• Each weight multiplied with pixel underneath it

• Output over the centered pixel is σ𝑝=1
𝑃 𝑊𝑝 ⋅ 𝑝𝑖𝑥𝑒𝑙𝑝

• Used for traditional image processing techniques:

o Blur

o Sharpen

o Edge detection

o Emboss



Kernel: 3x3 Example

Input Kernel Output

3 2 1

1 2 3

1 1 1

-1 0 1

-2 0 2

-1 0 1



Kernel: 3x3 Example

3 2 1

1 2 3

1 1 1

-1 0 1

-2 0 2

-1 0 1

Output



Kernel: 3x3 Example

Input Kernel Output

3 2 1

1 2 3

1 1 1

-1 0 1

-2 0 2

-1 0 1

= 3 ⋅ −1 + 2 ⋅ 0 + 1 ⋅ 1
+ 1 ⋅ −2 + 2 ⋅ 0 + 3 ⋅ 2
+ 1 ⋅ −1 + 1 ⋅ 0 + 1 ⋅ 1

= −3 + 1 − 2 + 6 − 1 + 1 = 2     

2



Kernel: Example



Kernels as Feature Detectors

Can think of kernels as a ”local feature detectors”

Vertical Line Detector

-1 1 -1

-1 1 -1

-1 1 -1

Horizontal Line Detector

-1 -1 -1

1 1 1

-1 -1 -1

Corner Detector

-1 -1 -1

-1 1 1

-1 1 1



Convolutional Neural Nets

Primary Ideas behind Convolutional Neural Networks:

• Let the Neural Network learn which kernels are most useful

• Use same set of kernels across entire image (translation invariance)

• Reduces number of parameters and “variance” (from bias-variance 

point of view)



Convolutions



Convolution Settings – Grid Size

Grid Size (Height and Width):

• The number of pixels a kernel “sees” at once

• Typically use odd numbers so that there is a “center” pixel

• Kernel does not need to be square

Height: 3, Width: 3 Height: 1, Width: 3 Height: 3, Width: 1



Convolution Settings - Padding

Padding

• Using Kernels directly, there will be an “edge effect”

• Pixels near the edge will not be used as “center pixels” since there 

are not enough surrounding pixels

• Padding adds extra pixels around the frame

• So every pixel of the original image will be a center pixel as the 

kernel moves across the image

• Added pixels are typically of value zero (zero-padding)



Without Padding



With Padding



Convolution Settings

Stride

• The ”step size” as the kernel moves across the image

• Can be different for vertical and horizontal steps (but usually is the 

same value)

• When stride is greater than 1, it scales down the output dimension



Stride 2 Example – No Padding

3

0



Stride 2 Example – With Padding

-1 2

3



Convolutional Settings - Depth

• In images, we often have multiple numbers associated with each 

pixel location.

• These numbers are referred to as “channels”

o RGB image – 3 channels

o CMYK – 4 channels

• The number of channels is referred to as the “depth”

• So the kernel itself will have a “depth” the same size as the number 

of input channels

• Example: a 5x5 kernel on an RGB image 

o There will be 5x5x3 = 75 weights



Convolutional Settings - Depth

• The output from the layer will also have a depth

• The networks typically train many different kernels

• Each kernel outputs a single number at each pixel location

• So if there are 10 kernels in a layer, the output of that layer will 

have depth 10.



Pooling

• Idea: Reduce the image size by mapping a patch of pixels to a 

single value.

• Shrinks the dimensions of the image.

• Does not have parameters, though there are different types of 

pooling operations.



Pooling: Max-pool

• For each distinct patch, represent it by the maximum

• 2x2 maxpool shown below



Pooling: Average-pool

• For each distinct patch, represent it by the average

• 2x2 avgpool shown below.



ConvNet: CONV, RELU, POOL

and FC Layers



Convolution Layer



Convolution Layer
consider a second, 
green filter



Convolution Layer



ReLU (Rectified Linear Units)Layer

• This is a layer of neurons that
applies  the activation function
f(x)=max(0,x).

• It increases the nonlinear properties
of the decision function and of the
overall network without affecting
the receptive fields of the
convolution layer.

• Other functions are also used to  
increase nonlinearity,  for example
the  hyperbolic tangent 
f(x)=tanh(x), and  the sigmoid
function.

• This is also known as a ramp
function.



A Basic ConvNet



What is convolution of an
image  with a filter



Details about the 
convolution layer



Details about the 
convolution layer



Details about the 
convolution layer



Convolution layer
examples



Pooling Layer



Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 7 - 27 Jan 2016Lecture 7 - 1
0
0

Where ReLu is used as f.

Convolutional Neural Networks

+ 

ReLu



Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 7 - 27 Jan 2016Lecture 7 - 1
0
1

Kernel= [1,0,1 
                0,1,0 
                1,0,1]

Convolutional Neural Networks

1 0 1

0 1 0

1 0 1



Applications



Applications



ConvNet: CONV, RELU, POOL and FC Layers

Pytorch Implementation



ConvNet: CONV, RELU, POOL and FC Layers

Pytorch Implementation



EVOLUTION OF MODEL 
ARCHITECURES



ImageNet Large Scale Visual Recognition Challenge 

(ILSVRC)



ILSVRC 



AlexNet

Architecture

CONV1 
MAX POOL1 
NORM1 
CONV2 
MAX POOL2 
NORM2 
CONV3 
CONV4 
CONV5

Max POOL3 
FC6

FC7 

FC8

• Input: 227x227x3 images (224x224 before padding)

• First layer: 96 11x11 filters applied at stride 4

• Output volume size?

(N-F)/s+1 = (227-11)/4+1 = 55 -> 
[55x55x96]

• Number of parameters in this layer? 

(11*11*3)*96 = 35K



AlexNet

Details/Retrospectives:

• first use of ReLU

• used Norm layers (not common anymore)

• heavy data augmentation

• dropout 0.5

• batch size 128

• 7 CNN ensemble



ILSVRC winners



VGGNet

• Smaller filters
Only 3x3 CONV filters, stride 1, pad 1 and 2x2
MAX POOL , stride 2

• Deeper network
AlexNet: 8 layers
VGGNet: 16 - 19 layers

• ZFNet: 11.7% top 5 error in ILSVRC’13

• VGGNet: 7.3% top 5 error in ILSVRC’14

Input
3x3 conv, 64
3x3 conv, 64 
Pool 1/2
3x3 conv, 128
3x3 conv, 128 
Pool 1/2
3x3 conv, 256
3x3 conv, 256 
Pool 1/2
3x3 conv, 512
3x3 conv, 512
3x3 conv, 512 
Pool 1/2
3x3 conv, 512
3x3 conv, 512
3x3 conv, 512 
Pool 1/2
FC 4096
FC 4096
FC 1000
Softmax



VGGNet

[Simonyan and Zisserman, 2014]

• Why use smaller filters? (3x3 conv)

Stack of three 3x3 conv (stride 1) layers has the same effective 
receptive field as one 7x7 conv layer.

• What is the effective receptive field of three 3x3 conv (stride 1)
layers?

7x7

But deeper, more non-linearities

And fewer parameters: 3 * (32C2) vs. 72C2 for C channels per layer



ILSVRC winners



GoogleNet

• 22 layers

• Efficient “Inception” module - strayed from the

general approach of simply stacking conv and

pooling layers on top of each other in a 

sequential structure

• No FC layers

• Only 5 million parameters!

• ILSVRC’14 classification winner (6.7% top 5 

error)



GoogleNet

“Inception module”: design a good local network topology (network within 

a network) and then stack these modules on top of each other

[Szegedy et al., 2014]

Filter
concatenation

Previous layer

1x1
convolution

3x3
convolution

5x5
convolution

1x1
convolution

1x1
convolution

1x1
convolution

3x3 max
pooling



ILSVRC winners



ResNet

• Deep Residual Learning for Image Recognition - Kaiming
He, Xiangyu Zhang, Shaoqing Ren, Jian Sun; 2015

• Extremely deep network – 152 layers

• Deeper neural networks are more difficult to train.

• Deep networks suffer from vanishing and 
exploding gradients.

• Present a residual learning framework to ease the
training of networks that are substantially deeper than
those used previously.

[He et al., 2015]



ResNet

• What happens when we continue stacking deeper layers on a 
convolutional neural network?

• 56-layer model performs worse on both training and test error

-> The deeper model performs worse (not caused by overfitting)!



ResNet

• Hypothesis: The problem is an optimization problem. Very 
deep networks are harder to optimize.

• Solution: Use network layers to fit residual mapping instead 
of directly trying to fit a desired underlying mapping.

• We will use skip connections allowing us to take the activation from
one layer and feed it into another layer, much deeper into the
network.

• Use layers to fit residual F(x) = H(x) – x 
instead of H(x) directly



ResNet

Residual Block
Input x goes through conv-relu-conv series and gives us F(x). That
result is then added to the original input x. Let’s call that H(x) = F(x)
+ x.

In traditional CNNs, H(x) would just be equal to F(x). So, instead of
just computing that transformation (straight from x to F(x)), we’re

computing the term that we have to add, F(x), to the input, x.



ResNet

Full ResNet architecture:

• Stack residual blocks

• Every residual block has two 3x3 conv layers

• Periodically, double # of filters and 
downsample spatially using stride 2 (in each 
dimension)

• Additional conv layer at the beginning

• No FC layers at the end (only FC 1000 to 
output classes)

[He et al., 2015]



ResNet

• Total depths of 34, 50, 101, or 152 layers for
ImageNet

• For deeper networks (ResNet-50+), use
“bottleneck” layer to improve efficiency
(similar to GoogLeNet)

[He et al., 2015]



ResNet

Experimental Results:

• Able to train very deep networks without degrading

• Deeper networks now achieve lower training errors as 
expected

The best CNN architecture that we currently have and is a 
great innovation for the idea of residual learning.

Even better than human performance!



ILSVRC winners



ARCHITECTURES FOR ADVANCED 
APPLICATIONS



Computer Vision Tasks

Classification
Semantic 

Segmentation
Object 

Detection

Instance 
Segmentation

CAT GRASS, CAT, TREE, SKY DOG, DOG, CAT DOG, DOG, CAT

No spatial extent Multiple ObjectNo objects, just pixels
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Semantic Segmentation

Classification
Semantic 

Segmentation
Object 

Detection

Instance 
Segmentation

CAT GRASS, CAT, TREE,
SKY

DOG, DOG, CAT DOG, DOG, CAT

No spatial extent Multiple ObjectNo objects, just pixels
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Semantic Segmentation: The Problem

GRASS, CAT, TREE, SKY, ...

Paired training data: for each training image, each pixel is
labeled with a semantic category.

At test time, classify each pixel of a new image.

?



Semantic Segmentation Idea: Sliding Window

Full image

?

Impossible to classify without context

Q: how do we include context?



Semantic Segmentation Idea: Sliding Window

Full image

Extract patch
Classify center pixel
with CNN

Cow

Grass

Cow

Problem: Very inefficient! Not reusing shared
features between overlapping patches

Farabet et al, “Learning Hierarchical Features for Scene Labeling,” TPAMI 2013

Pinheiro and Collobert, “Recurrent Convolutional Neural Networks for Scene Labeling”, ICML 2014



Semantic Segmentation Idea: Convolution

Full image

An intuitive idea: encode the entire image with conv net, and do semantic segmentation on top.

Problem: classification architectures often reduce feature spatial sizes to go deeper, but semantic segmentation requires the output size
to be the same as input size.



Semantic Segmentation Idea: Fully Convolutional

Input:
3 x H x W

Convolutions: D
x H x W

Conv Conv Conv Conv

Scores: C
x H x W

argmax

Predictions: H
x W

Design a network with only convolutional layers without
downsampling operators to make predictions for pixels all at
once!



Semantic Segmentation Idea: Fully Convolutional

Input:
3 x H x W

Convolutions: D
x H x W

Conv Conv Conv Conv

Scores: C
x H x W

argmax

Predictions: 
H x W

Design a network with only convolutional layers without
downsampling operators to make predictions for pixels all at
once!

Problem: convolutions at 
original image resolution will be
very expensive ...



Semantic Segmentation Idea: Fully Convolutional

Input:
3 x H x W Predictions: 

H x W

Design network as a bunch of convolutional layers, with
downsampling and upsampling inside the network!

High-res: D1 

x H/2 x W/2

1

High-res:
D x H/2 x W/2

Med-res: D2 

x H/4 x W/4
Med-res: D2 

x H/4 x W/4

Low-res: D3 x
H/4 x W/4

C x H x W



Semantic Segmentation Idea: Fully Convolutional

Input:
3 x H x W

Predictions: 
H x W

Design network as a bunch of convolutional layers, with
downsampling and upsampling inside the network!

High-res: D1 

x H/2 x W/2

Med-res: D2 

x H/4 x W/4
Med-res: D2 

x H/4 x W/4

Low-res: D3 x
H/4 x W/4

Downsampling: 
Pooling, strided 
convolution

Upsampling:
???

C x H x W

Long, Shelhamer, and Darrell, “Fully Convolutional Networks for Semantic Segmentation”, CVPR 2015

Noh et al, “Learning Deconvolution Network for Semantic Segmentation”, ICCV 2015

High-res:
D x H/2 x W/2



OBJECT DETECTION



Object Detection
Classification

Semantic 
Segmentation

Object 
Detection

Instance 
Segmentation

GRASS, CAT, TREE,

SKY
CAT DOG, DOG, CAT DOG, DOG, CAT

Multiple ObjectNo spatial extent No objects, just pixels



Class Scores
Cat: 0.9
Dog: 0.05
Car: 0.01
...

Object Detection: Single Object
(Classification + Localization)

This image is CC0 pub lic domain
Vector:

4096

Fully 

Connected: 
4096 to 1000

Box 
Coordinates 
(x, y, w, h)

Fully 
Connected: 
4096 to 4

x, y

h

w

https://pixabay.com/p-1246693/?no_redirect
https://creativecommons.org/publicdomain/zero/1.0/deed.en


Class Scores
Cat: 0.9
Dog: 0.05
Car: 0.01
...

Vector:
4096

Fully 

Connected: 
4096 to 1000

Box 
Coordinates

Fully 
Connected: 
4096 to 4

Softmax 
Loss

L2 Loss

Loss

Correct label:
Cat

+Multitask Loss

Object Detection: Single Object
(Classification + Localization)

This image is CC0 pub lic domain

x, y

h

w

(x, y, w, h)
Treat localization as a 

regression problem! Correct box: 
(x’, y’, w’, h’)

Lecture 15 -

May 20, 2021
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https://pixabay.com/p-1246693/?no_redirect
https://creativecommons.org/publicdomain/zero/1.0/deed.en


CAT: (x, y, w, h)

DOG: (x, y, w, h)
DOG: (x, y, w, h)
CAT: (x, y, w, h)

DUCK: (x, y, w, h)
DUCK: (x, y, w, h)
….

May 20, 2021

141

4 numbers

12 numbers

Many 
numbers!

Each image needs a different
number of outputs!

Object Detection: Multiple Objects



Lecture 15 - May 20, 2021Fei-Fei Li, Ranjay Krishna, Danfei Xu 142

Apply a CNN to many different crops of the image, CNN classifies each

crop as object or background

Object Detection: Multiple Objects

Problem: Need to apply CNN to 
huge number of locations, scales, 
and aspect ratios, very 
computationally expensive!

Dog? NO 
Cat? YES
Background? NO



Region Proposals: Selective Search

● Find “blobby” image regions that are likely to contain objects

● Relatively fast to run; e.g. Selective Search gives 2000 region 

proposals in a few seconds on CPU

Lecture 15 - May 20, 2021Fei-Fei Li, Ranjay Krishna, Danfei Xu 143

Alexe et al, “Measuring the objectness of image windows”, TPAMI 2012
Uijlings et al, “Selective Search for Object Recognition”, IJCV 2013

Cheng et al, “BING: Binarized normed gradients for objectness estimation at 300fps”, CVPR 2014

Zitnick and Dollar, “Edge boxes: Locating object proposals from edges”, ECCV 2014



“Slow” R-CNN

Lecture 15 - May 20, 2021144

Warped image
regions (224x224
pixels)

(RoI) from a proposal 
method (~2k)

Forward each 
region through 
ConvNet

Girshick et al, “Rich feature hierarchies for accurate object detection and

semantic segmentation”, CVPR 2014.

Classify regions
with SVMs

Input
image

Conv
N 
et

Conv
N 
et

Conv
N 
et

SVMs

SVMs

SVMs

Bbox reg

Bbox reg

Bbox reg

Predict “corrections” to the RoI: 4
numbers: (dx, dy, dw, dh)



“Slow” R-CNN

Lecture 15 - May 20, 2021145

Warped image regions 
(224x224 pixels)

(RoI) from a
proposal method
(~2k)

Forward each 
region through 
ConvNet

Girshick et al, “Rich feature hierarchies for accurate object detection and

semantic segmentation”, CVPR 2014.

Classify regions
with SVMs

Input
image

Conv
N 
et

Conv
N 
et

Conv
N 
et

SVMs

SVMs

SVMs

Bbox reg

Bbox reg

Bbox reg

Predict “corrections” to the RoI: 4
numbers: (dx, dy, dw, dh) Problem: Very

slow! Need to do

~2k independent

forward passes

for each image!

Idea: Pass the 

image through 

convnet before 

cropping! Crop the 

conv feature

instead!



Fast R-CNN
“Slow” R-CNN

May 20, 2021Fei-Fei Li, Ranjay Krishna, Danfei Xu 146

ConvNet

Input image

Run whole image 
through ConvNet

“conv5” features

Crop + Resize features

Linear + 
softmax

CNN Per-Region Network

Object 
category

Linear Box offset

Girshick, “Fast R-CNN”, ICCV 2015.

Regions of 
Interest (RoIs)
from a proposal
method

“Backbone” 
network: 
AlexNet, VGG, 
ResNet, etc



Object Detection: Faster R-CNN

May 20, 2021

ROI pooling / ROI 
Alignment creates fixed 
size feature maps from 
convolutional maps of 
the ROI.



Instance Segmentation: Mask R-CNN

Mask Prediction

Lecture 15 - May 20, 2021Fei-Fei Li, Ranjay Krishna, Danfei Xu 148He et al, “Mask R-CNN”, ICCV 2017

Add a small mask 

network that

operates on each

RoI and predicts a

28x28 binary mask



Mask R-CNN: Very Good Results!

He et al, “Mask R-CNN”, ICCV 2017

May 20, 2021



Summary: Lots of computer vision tasks!

Classification
Semantic 

Segmentation
Object 

Detection

Instance 

Segmentation

CAT GRASS, CAT, 

TREE, SKY
DOG, DOG, CAT DOG, DOG, CAT

No spatial extent Multiple ObjectNo objects, just pixels

May 20, 2021
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