
CS60050: Machine Learning

Neural Networks

Sourangshu Bhattacharya

Neural Networks

What is a Neuron?

▪ A neuron is a basic processing unit

of a neural network.

▪ Given several inputs: 𝑥1, 𝑥2, 𝑥3, … ∈ ℝ
and several weights: 𝑤1, 𝑤2, 𝑤3, … ∈ ℝ
and a bias value: 𝑏 ∈ ℝ

▪ A neuron produces a single output:

𝑜𝑖 = 𝑠

𝑖

𝑤𝑖𝑥𝑖 + 𝑏

▪ This sum is called the activation of the neuron: σ𝑖 𝑤𝑖𝑥𝑖 + 𝑏

▪ The function s is called the activation function for the neuron

▪ The weights and bias values are typically initialized randomly and

learned during training

Activation functions

+1 +1

iniini

g(ini) g(ini)

(a) (b)

(a)is a step function or threshold function

(b)is a sigmoid function 1/(1 + e−x)

Changing the bias weight W0,i moves the threshold location

The purpose of the activation function is to add a non-linear transformation and

in some cases squash the output to a specified range.

Commonly used Activation functions

Perceptron

Perceptron: a 1-layer NN

Task: Classification

Perceptron: a 1-layer NN

• Given training data D = { 𝑥𝑖 , 𝑦𝑖 : 1 ≤ 𝑖 ≤ 𝑛}

i.i.d. from distribution 𝐷

• Hypothesis 𝑓𝑤(𝑥) = 𝑤𝑇𝑥

– 𝑦 = +1 if 𝑤𝑇𝑥 > 0

– 𝑦 = -1 if 𝑤𝑇𝑥 ≤ 0

• Prediction: 𝑦 = 𝑠𝑖𝑔𝑛(𝑓𝑤(𝑥)) = 𝑠𝑖𝑔𝑛(𝑤𝑇𝑥)

– Activation function: step function

Expressiveness of Perceptrons

Multi-layer Perceptrons

Feed Forward Neural
Networks

Many neurons are organized into

layers.

Layer zero is input data.

Neurons taking input from the input

data are called layer one neurons.

Neurons taking input from the

output of layer 1 neurons, or input

data are called layer 2 neurons

Layer n neurons: Take input from

Layer 0 … Layer 𝑛 − 1 neurons.

Feed forward Neural Network Computation

Hidden-Layer

• The hidden layer represent learned non-

linear combination of input data

• For solving the XOR problem, we need a

hidden layer
• some neurons in the hidden layer will activate only for some combination of

input features

• the output layer can represent combination of the activations of the hidden

neurons

Solution to the Xor problem

Composition of Transformations

● Each neuron in neural network can be thought of as computing a useful
representation of its inputs.

● A layer – composed of many neuron can be thought as a full representation
of the input datapoint.

○ This representation is independent of the other datapoints – hence distributed
representations.

Distributed feature representation

Example: A useful feature transformation

● Each neuron in neural network can be thought of as computing a useful
representation of its inputs.

● A layer – composed of many neuron can be thought as a full representation
of the input datapoint.

○ This representation is independent of the other datapoints – hence distributed
representations.

● The representations are formed hierarchically in each layer - progressively
becoming more useful for the end task.

● The neural network can be thought as a composition of such “feature
encoders”.

Distributed feature representation

Feed forward Neural Network Example

A Toy Neural Network

Feed forward Neural Network Example

Hidden-Layer

• The hidden layer represent learned non-linear combination of

input data

• For solving the XOR problem, we need a hidden layer
• some neurons in the hidden layer will activate only for some combination of

input features

• the output layer can represent combination of the activations of the hidden

neurons

• Neural network with one hidden layer is a universal

approximator

– Every function can be modeled as a shallow feed forward network

– Not all functions can be represented efficiently with a single hidden layer

 we still need deep neural networks

Deep Neural Networks

• Neural networks with more than 2 / 3 / 4 layers are
considered “Deep”.

– There is no agreement on the threshold.

• Require systematic approach to:

– Train – Backpropagation.

– Design – Modular approach.

– Debug – Issues like vanishing gradient.

• Deeper neural networks have been shown to perform better
than shallow ones.
– Hierarchical buildup of useful features.

Deep Neural Networks – hierarchical features

Shallow to Deep Neural Networks

• Neural Networks can have several hidden layers

• Initializing the weights randomly and training all layers at

once does hardly work

• Instead we train layerwise on unannotated data (a.k.a. pre-

training):

– Train the first hidden layer

– Fix the parameters for the first layer and train the

second layer.

– Fix the parameters for the first & second layer, train

the third layer

• After the pre-training, train all layers using your annotated data

• The pre-training on your unannotated data creates a high-level abstractions of the input data

• The final training with annotated data fine tunes all parameters in the network

TRAINING A NEURAL NETWORK

How to learn the weights ?
• Initialise the weights i.e. Wk,j Wj,i with random values

• With input entries we calculate the predicted output

• We compare the prediction with the true output

• The error is calculated

• The error needs to be sent as feedback for updating the weights

Input
(Feature Vector)

Output
(Label)

• Put in Training inputs, get the output

• Compare output to correct answers: Look at loss function J

• Adjust and repeat!

• Backpropagation tells us how to make a single adjustment using calculus.

How to Train a Neural Net?

• Gradient Descent!

1. Make prediction

2. Calculate Loss

3. Calculate gradient of the loss function w.r.t. parameters

4. Update parameters by taking a step in the opposite direction

5. Iterate

How to Train a Neural Net?

How to Train a Neural Net?

• Gradient Descent!

1. Make prediction

2. Calculate Loss

3. Calculate gradient of the loss function w.r.t. parameters

4. Update parameters by taking a step in the opposite direction

5. Iterate

𝑦1𝑥1

𝑥2

𝑥3

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

ො𝑦1

ො𝑦2

ො𝑦3

𝑦2

𝑦3

Forward Propagation

𝑦1𝑥1

𝑥2

𝑥3

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

ො𝑦1

ො𝑦2

ො𝑦3

𝑦2

𝑦3

Pass in

Input

Forward Propagation

𝑦1𝑥1

𝑥2

𝑥3

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

ො𝑦1

ො𝑦2

ො𝑦3

𝑦2

𝑦3

Calculate each Layer

Forward Propagation

𝑦1𝑥1

𝑥2

𝑥3

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

ො𝑦1

ො𝑦2

ො𝑦3

𝑦2

𝑦3

Get Output

Forward Propagation

𝑦1

Forward Propagation

𝑥1

𝑥2

𝑥3

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

ො𝑦1

ො𝑦2

ො𝑦3

𝑦2

𝑦3

Evaluate:
𝐽 𝑦𝑖 , ෝ𝑦𝑖

How to Train a Neural Net?

• Gradient Descent!

1. Make prediction

2. Calculate Loss

3. Calculate gradient of the loss function w.r.t. parameters

4. Update parameters by taking a step in the opposite direction

5. Iterate

• How could we change the weights to make our Loss Function lower?

• Think of neural net as a function 𝐹: 𝑋 −> 𝑌

• F is a complex computation involving many weights 𝑊𝑘

• Given the structure, the weights “define” the function F (and therefore

define our model)

• Loss Function is 𝐽(𝑦, 𝐹(𝑥))

How to Train a Neural Net?

• Get
𝜕𝐽

𝜕𝑊𝑘
 for every weight in the network.

• This tells us what direction to adjust each Wk if we want to lower our loss

function.

• Make an adjustment and repeat!

How to Train a Neural Net?

𝑦1

Feedforward Neural Network

𝑥1

𝑥2

𝑥3

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

ො𝑦1

ො𝑦2

ො𝑦3

𝑦2

𝑦3

𝜕𝐽 𝑦𝑖 , ෝ𝑦𝑖

𝜕𝑊𝑘

𝑊(1) 𝑊(2) 𝑊(3)
Want:

𝑦1𝑥1

𝑥2

𝑥3

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

ො𝑦1

ො𝑦2

ො𝑦3

𝑦2

𝑦3

𝜕𝐽 𝑦𝑖 , ෝ𝑦𝑖

𝜕𝑊𝑘

𝑊(1) 𝑊(2) 𝑊(3)
Want:

Backward Pass

𝑦1𝑥1

𝑥2

𝑥3

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

ො𝑦1

ො𝑦2

ො𝑦3

𝑦2

𝑦3

𝑊(1) 𝑊(2) 𝜕𝐽 𝑦𝑖, ෝ𝑦𝑖

𝜕𝑊3

Backward Pass

𝑦1𝑥1

𝑥2

𝑥3

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

ො𝑦1

ො𝑦2

ො𝑦3

𝑦2

𝑦3

𝜕𝐽 𝑦𝑖, ෝ𝑦𝑖

𝜕𝑊3

𝜕𝐽 𝑦𝑖 , ෝ𝑦𝑖

𝜕𝑊2
𝑊(1)

Backward Pass

𝑦1𝑥1

𝑥2

𝑥3

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

ො𝑦1

ො𝑦2

ො𝑦3

𝑦2

𝑦3

𝜕𝐽 𝑦𝑖, ෝ𝑦𝑖

𝜕𝑊3

𝜕𝐽 𝑦𝑖 , ෝ𝑦𝑖

𝜕𝑊2

𝜕𝐽 𝑦𝑖, ෝ𝑦𝑖

𝜕𝑊1

Backward Pass

𝜕𝐽

𝜕𝑊(2)
= (ො𝑦 − 𝑦) ⋅ 𝑊 3 ⋅ 𝜎′ 𝑧(3) ⋅ 𝑎(2)

𝜕𝐽

𝜕𝑊(1)
= ො𝑦 − 𝑦 ⋅ 𝑊 3 ⋅ 𝜎′ 𝑧(3) ⋅ 𝑊 2 ⋅ 𝜎′ 𝑧 2 ⋅ 𝑋

𝜕𝐽

𝜕𝑊(3)
= (ො𝑦 − 𝑦) ⋅ 𝑎(3)

• Recall that: 𝜎′ 𝑧 = 𝜎(𝑧)(1 − 𝜎(𝑧))

• Though they appear complex, above are easy to compute!

Backpropagation Formula

How to Train a Neural Net?

• Gradient Descent!

1. Make prediction

2. Calculate Loss

3. Calculate gradient of the loss function w.r.t. parameters

4. Update parameters by taking a step in the opposite direction

 a. 𝑊𝑡+1 = 𝑊𝑡 − 𝜂𝑡 ൗ𝜕𝐽 𝐹𝑤 𝑥
𝜕𝑊

5. Iterate

Going from Shallow to Deep Neural Networks
• Neural Networks can have several hidden layers

• Initializing the weights randomly and training all
layers at once does hardly work

• Instead we train layerwise on unannotated data
(a.k.a. pre-training):

– Train the first hidden layer

– Fix the parameters for the first layer and train the

second layer.

– Fix the parameters for the first & second layer, train the

third layer

• After the pre-training, train all layers using your annotated data

• The pre-training on your unannotated data creates a high-level

abstractions of the input data

• The final training with annotated data fine tunes all parameters in the

network

Computational Graph

Definition: a data structure for storing gradients of variables used
in computations.

● Node v represents variable
○ Stores value
○ Gradient
○ The function that created the node

● Directed edge (u,v) represents the partial derivative of u w.r.t. v

● To compute the gradient dL/dv, find the unique path from L to v
and multiply the edge weights.

Backpropagation for neural nets

Given softmax activation, L2 loss, a point (x1, x2, x3, y) = (0. 1, 0.15, 0.2, 1),

compute the gradient

Backpropagation for neural nets: forward pass

Backpropagation for neural nets: backward pass

Computation Graphs

CONVOLUTIONAL NEURAL
NETWORKS

Motivation – Image Data

• So far, the structure of our neural network treats all inputs

interchangeably.

• No relationships between the individual inputs

• Just an ordered set of variables

• We want to incorporate domain knowledge into the architecture of

a Neural Network.

Motivation

• Image data has important structures, such as;

• ”Topology” of pixels

• Translation invariance

• Issues of lighting and contrast

• Knowledge of human visual system

• Nearby pixels tend to have similar values

• Edges and shapes

• Scale Invariance – objects may appear at different sizes in the

image.

Motivation – Image Data

• Fully connected would require a vast number of parameters

• MNIST images are small (32 x 32 pixels) and in grayscale

• Color images are more typically at least (200 x 200) pixels x 3

color channels (RGB) = 120,000 values.

• A single fully connected layer would require (200x200x3)2 =

14,400,000,000 weights!

• Variance (in terms of bias-variance) would be too high

• So we introduce “bias” by structuring the network to look for certain

kinds of patterns

Motivation

• Features need to be “built up”

• Edges -> shapes -> relations between shapes

• Textures

• Cat = two eyes in certain relation to one another + cat fur texture.

• Eyes = dark circle (pupil) inside another circle.

• Circle = particular combination of edge detectors.

• Fur = edges in certain pattern.

Kernels

• A kernel is a grid of weights “overlaid” on image, centered on one

pixel

• Each weight multiplied with pixel underneath it

• Output over the centered pixel is σ𝑝=1
𝑃 𝑊𝑝 ⋅ 𝑝𝑖𝑥𝑒𝑙𝑝

• Used for traditional image processing techniques:

o Blur

o Sharpen

o Edge detection

o Emboss

Kernel: 3x3 Example

Input Kernel Output

3 2 1

1 2 3

1 1 1

-1 0 1

-2 0 2

-1 0 1

Kernel: 3x3 Example

3 2 1

1 2 3

1 1 1

-1 0 1

-2 0 2

-1 0 1

Output

Kernel: 3x3 Example

Input Kernel Output

3 2 1

1 2 3

1 1 1

-1 0 1

-2 0 2

-1 0 1

= 3 ⋅ −1 + 2 ⋅ 0 + 1 ⋅ 1
+ 1 ⋅ −2 + 2 ⋅ 0 + 3 ⋅ 2
+ 1 ⋅ −1 + 1 ⋅ 0 + 1 ⋅ 1

= −3 + 1 − 2 + 6 − 1 + 1 = 2

2

Kernel: Example

Kernels as Feature Detectors

Can think of kernels as a ”local feature detectors”

Vertical Line Detector

-1 1 -1

-1 1 -1

-1 1 -1

Horizontal Line Detector

-1 -1 -1

1 1 1

-1 -1 -1

Corner Detector

-1 -1 -1

-1 1 1

-1 1 1

Convolutional Neural Nets

Primary Ideas behind Convolutional Neural Networks:

• Let the Neural Network learn which kernels are most useful

• Use same set of kernels across entire image (translation invariance)

• Reduces number of parameters and “variance” (from bias-variance

point of view)

Convolutions

Convolution Settings – Grid Size

Grid Size (Height and Width):

• The number of pixels a kernel “sees” at once

• Typically use odd numbers so that there is a “center” pixel

• Kernel does not need to be square

Height: 3, Width: 3 Height: 1, Width: 3 Height: 3, Width: 1

Convolution Settings - Padding

Padding

• Using Kernels directly, there will be an “edge effect”

• Pixels near the edge will not be used as “center pixels” since there

are not enough surrounding pixels

• Padding adds extra pixels around the frame

• So every pixel of the original image will be a center pixel as the

kernel moves across the image

• Added pixels are typically of value zero (zero-padding)

Without Padding

With Padding

Convolution Settings

Stride

• The ”step size” as the kernel moves across the image

• Can be different for vertical and horizontal steps (but usually is the

same value)

• When stride is greater than 1, it scales down the output dimension

Stride 2 Example – No Padding

3

0

Stride 2 Example – With Padding

-1 2

3

Convolutional Settings - Depth

• In images, we often have multiple numbers associated with each

pixel location.

• These numbers are referred to as “channels”

o RGB image – 3 channels

o CMYK – 4 channels

• The number of channels is referred to as the “depth”

• So the kernel itself will have a “depth” the same size as the number

of input channels

• Example: a 5x5 kernel on an RGB image

o There will be 5x5x3 = 75 weights

Convolutional Settings - Depth

• The output from the layer will also have a depth

• The networks typically train many different kernels

• Each kernel outputs a single number at each pixel location

• So if there are 10 kernels in a layer, the output of that layer will

have depth 10.

Pooling

• Idea: Reduce the image size by mapping a patch of pixels to a

single value.

• Shrinks the dimensions of the image.

• Does not have parameters, though there are different types of

pooling operations.

Pooling: Max-pool

• For each distinct patch, represent it by the maximum

• 2x2 maxpool shown below

Pooling: Average-pool

• For each distinct patch, represent it by the average

• 2x2 avgpool shown below.

ConvNet: CONV, RELU, POOL

and FC Layers

Convolution Layer

Convolution Layer
consider a second,
green filter

Convolution Layer

ReLU (Rectified Linear Units)Layer

• This is a layer of neurons that
applies the activation function
f(x)=max(0,x).

• It increases the nonlinear properties
of the decision function and of the
overall network without affecting
the receptive fields of the
convolution layer.

• Other functions are also used to
increase nonlinearity, for example
the hyperbolic tangent
f(x)=tanh(x), and the sigmoid
function.

• This is also known as a ramp
function.

A Basic ConvNet

What is convolution of an
image with a filter

Details about the
convolution layer

Details about the
convolution layer

Details about the
convolution layer

Convolution layer
examples

Pooling Layer

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 7 - 27 Jan 2016Lecture 7 - 1
0
0

Where ReLu is used as f.

Convolutional Neural Networks

+

ReLu

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 7 - 27 Jan 2016Lecture 7 - 1
0
1

Kernel= [1,0,1
 0,1,0
 1,0,1]

Convolutional Neural Networks

1 0 1

0 1 0

1 0 1

Applications

Applications

ConvNet: CONV, RELU, POOL and FC Layers

Pytorch Implementation

ConvNet: CONV, RELU, POOL and FC Layers

Pytorch Implementation

EVOLUTION OF MODEL
ARCHITECURES

ImageNet Large Scale Visual Recognition Challenge

(ILSVRC)

ILSVRC

AlexNet

Architecture

CONV1
MAX POOL1
NORM1
CONV2
MAX POOL2
NORM2
CONV3
CONV4
CONV5

Max POOL3
FC6

FC7

FC8

• Input: 227x227x3 images (224x224 before padding)

• First layer: 96 11x11 filters applied at stride 4

• Output volume size?

(N-F)/s+1 = (227-11)/4+1 = 55 ->
[55x55x96]

• Number of parameters in this layer?

(11*11*3)*96 = 35K

AlexNet

Details/Retrospectives:

• first use of ReLU

• used Norm layers (not common anymore)

• heavy data augmentation

• dropout 0.5

• batch size 128

• 7 CNN ensemble

ILSVRC winners

VGGNet

• Smaller filters
Only 3x3 CONV filters, stride 1, pad 1 and 2x2
MAX POOL , stride 2

• Deeper network
AlexNet: 8 layers
VGGNet: 16 - 19 layers

• ZFNet: 11.7% top 5 error in ILSVRC’13

• VGGNet: 7.3% top 5 error in ILSVRC’14

Input
3x3 conv, 64
3x3 conv, 64
Pool 1/2
3x3 conv, 128
3x3 conv, 128
Pool 1/2
3x3 conv, 256
3x3 conv, 256
Pool 1/2
3x3 conv, 512
3x3 conv, 512
3x3 conv, 512
Pool 1/2
3x3 conv, 512
3x3 conv, 512
3x3 conv, 512
Pool 1/2
FC 4096
FC 4096
FC 1000
Softmax

VGGNet

[Simonyan and Zisserman, 2014]

• Why use smaller filters? (3x3 conv)

Stack of three 3x3 conv (stride 1) layers has the same effective
receptive field as one 7x7 conv layer.

• What is the effective receptive field of three 3x3 conv (stride 1)
layers?

7x7

But deeper, more non-linearities

And fewer parameters: 3 * (32C2) vs. 72C2 for C channels per layer

ILSVRC winners

GoogleNet

• 22 layers

• Efficient “Inception” module - strayed from the

general approach of simply stacking conv and

pooling layers on top of each other in a

sequential structure

• No FC layers

• Only 5 million parameters!

• ILSVRC’14 classification winner (6.7% top 5

error)

GoogleNet

“Inception module”: design a good local network topology (network within

a network) and then stack these modules on top of each other

[Szegedy et al., 2014]

Filter
concatenation

Previous layer

1x1
convolution

3x3
convolution

5x5
convolution

1x1
convolution

1x1
convolution

1x1
convolution

3x3 max
pooling

ILSVRC winners

ResNet

• Deep Residual Learning for Image Recognition - Kaiming
He, Xiangyu Zhang, Shaoqing Ren, Jian Sun; 2015

• Extremely deep network – 152 layers

• Deeper neural networks are more difficult to train.

• Deep networks suffer from vanishing and
exploding gradients.

• Present a residual learning framework to ease the
training of networks that are substantially deeper than
those used previously.

[He et al., 2015]

ResNet

• What happens when we continue stacking deeper layers on a
convolutional neural network?

• 56-layer model performs worse on both training and test error

-> The deeper model performs worse (not caused by overfitting)!

ResNet

• Hypothesis: The problem is an optimization problem. Very
deep networks are harder to optimize.

• Solution: Use network layers to fit residual mapping instead
of directly trying to fit a desired underlying mapping.

• We will use skip connections allowing us to take the activation from
one layer and feed it into another layer, much deeper into the
network.

• Use layers to fit residual F(x) = H(x) – x
instead of H(x) directly

ResNet

Residual Block
Input x goes through conv-relu-conv series and gives us F(x). That
result is then added to the original input x. Let’s call that H(x) = F(x)
+ x.

In traditional CNNs, H(x) would just be equal to F(x). So, instead of
just computing that transformation (straight from x to F(x)), we’re

computing the term that we have to add, F(x), to the input, x.

ResNet

Full ResNet architecture:

• Stack residual blocks

• Every residual block has two 3x3 conv layers

• Periodically, double # of filters and
downsample spatially using stride 2 (in each
dimension)

• Additional conv layer at the beginning

• No FC layers at the end (only FC 1000 to
output classes)

[He et al., 2015]

ResNet

• Total depths of 34, 50, 101, or 152 layers for
ImageNet

• For deeper networks (ResNet-50+), use
“bottleneck” layer to improve efficiency
(similar to GoogLeNet)

[He et al., 2015]

ResNet

Experimental Results:

• Able to train very deep networks without degrading

• Deeper networks now achieve lower training errors as
expected

The best CNN architecture that we currently have and is a
great innovation for the idea of residual learning.

Even better than human performance!

ILSVRC winners

ARCHITECTURES FOR ADVANCED
APPLICATIONS

Computer Vision Tasks

Classification
Semantic

Segmentation
Object

Detection

Instance
Segmentation

CAT GRASS, CAT, TREE, SKY DOG, DOG, CAT DOG, DOG, CAT

No spatial extent Multiple ObjectNo objects, just pixels

May 20, 2021

Semantic Segmentation

Classification
Semantic

Segmentation
Object

Detection

Instance
Segmentation

CAT GRASS, CAT, TREE,
SKY

DOG, DOG, CAT DOG, DOG, CAT

No spatial extent Multiple ObjectNo objects, just pixels

L
e
c
t
u
r
e
1
5
-

May 20, 2021

1
2
8

Semantic Segmentation: The Problem

GRASS, CAT, TREE, SKY, ...

Paired training data: for each training image, each pixel is
labeled with a semantic category.

At test time, classify each pixel of a new image.

?

Semantic Segmentation Idea: Sliding Window

Full image

?

Impossible to classify without context

Q: how do we include context?

Semantic Segmentation Idea: Sliding Window

Full image

Extract patch
Classify center pixel
with CNN

Cow

Grass

Cow

Problem: Very inefficient! Not reusing shared
features between overlapping patches

Farabet et al, “Learning Hierarchical Features for Scene Labeling,” TPAMI 2013

Pinheiro and Collobert, “Recurrent Convolutional Neural Networks for Scene Labeling”, ICML 2014

Semantic Segmentation Idea: Convolution

Full image

An intuitive idea: encode the entire image with conv net, and do semantic segmentation on top.

Problem: classification architectures often reduce feature spatial sizes to go deeper, but semantic segmentation requires the output size
to be the same as input size.

Semantic Segmentation Idea: Fully Convolutional

Input:
3 x H x W

Convolutions: D
x H x W

Conv Conv Conv Conv

Scores: C
x H x W

argmax

Predictions: H
x W

Design a network with only convolutional layers without
downsampling operators to make predictions for pixels all at
once!

Semantic Segmentation Idea: Fully Convolutional

Input:
3 x H x W

Convolutions: D
x H x W

Conv Conv Conv Conv

Scores: C
x H x W

argmax

Predictions:
H x W

Design a network with only convolutional layers without
downsampling operators to make predictions for pixels all at
once!

Problem: convolutions at
original image resolution will be
very expensive ...

Semantic Segmentation Idea: Fully Convolutional

Input:
3 x H x W Predictions:

H x W

Design network as a bunch of convolutional layers, with
downsampling and upsampling inside the network!

High-res: D1

x H/2 x W/2

1

High-res:
D x H/2 x W/2

Med-res: D2

x H/4 x W/4
Med-res: D2

x H/4 x W/4

Low-res: D3 x
H/4 x W/4

C x H x W

Semantic Segmentation Idea: Fully Convolutional

Input:
3 x H x W

Predictions:
H x W

Design network as a bunch of convolutional layers, with
downsampling and upsampling inside the network!

High-res: D1

x H/2 x W/2

Med-res: D2

x H/4 x W/4
Med-res: D2

x H/4 x W/4

Low-res: D3 x
H/4 x W/4

Downsampling:
Pooling, strided
convolution

Upsampling:
???

C x H x W

Long, Shelhamer, and Darrell, “Fully Convolutional Networks for Semantic Segmentation”, CVPR 2015

Noh et al, “Learning Deconvolution Network for Semantic Segmentation”, ICCV 2015

High-res:
D x H/2 x W/2

OBJECT DETECTION

Object Detection
Classification

Semantic
Segmentation

Object
Detection

Instance
Segmentation

GRASS, CAT, TREE,

SKY
CAT DOG, DOG, CAT DOG, DOG, CAT

Multiple ObjectNo spatial extent No objects, just pixels

Class Scores
Cat: 0.9
Dog: 0.05
Car: 0.01
...

Object Detection: Single Object
(Classification + Localization)

This image is CC0 pub lic domain
Vector:

4096

Fully

Connected:
4096 to 1000

Box
Coordinates
(x, y, w, h)

Fully
Connected:
4096 to 4

x, y

h

w

https://pixabay.com/p-1246693/?no_redirect
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Class Scores
Cat: 0.9
Dog: 0.05
Car: 0.01
...

Vector:
4096

Fully

Connected:
4096 to 1000

Box
Coordinates

Fully
Connected:
4096 to 4

Softmax
Loss

L2 Loss

Loss

Correct label:
Cat

+Multitask Loss

Object Detection: Single Object
(Classification + Localization)

This image is CC0 pub lic domain

x, y

h

w

(x, y, w, h)
Treat localization as a

regression problem! Correct box:
(x’, y’, w’, h’)

Lecture 15 -

May 20, 2021

140

https://pixabay.com/p-1246693/?no_redirect
https://creativecommons.org/publicdomain/zero/1.0/deed.en

CAT: (x, y, w, h)

DOG: (x, y, w, h)
DOG: (x, y, w, h)
CAT: (x, y, w, h)

DUCK: (x, y, w, h)
DUCK: (x, y, w, h)
….

May 20, 2021

141

4 numbers

12 numbers

Many
numbers!

Each image needs a different
number of outputs!

Object Detection: Multiple Objects

Lecture 15 - May 20, 2021Fei-Fei Li, Ranjay Krishna, Danfei Xu 142

Apply a CNN to many different crops of the image, CNN classifies each

crop as object or background

Object Detection: Multiple Objects

Problem: Need to apply CNN to
huge number of locations, scales,
and aspect ratios, very
computationally expensive!

Dog? NO
Cat? YES
Background? NO

Region Proposals: Selective Search

● Find “blobby” image regions that are likely to contain objects

● Relatively fast to run; e.g. Selective Search gives 2000 region

proposals in a few seconds on CPU

Lecture 15 - May 20, 2021Fei-Fei Li, Ranjay Krishna, Danfei Xu 143

Alexe et al, “Measuring the objectness of image windows”, TPAMI 2012
Uijlings et al, “Selective Search for Object Recognition”, IJCV 2013

Cheng et al, “BING: Binarized normed gradients for objectness estimation at 300fps”, CVPR 2014

Zitnick and Dollar, “Edge boxes: Locating object proposals from edges”, ECCV 2014

“Slow” R-CNN

Lecture 15 - May 20, 2021144

Warped image
regions (224x224
pixels)

(RoI) from a proposal
method (~2k)

Forward each
region through
ConvNet

Girshick et al, “Rich feature hierarchies for accurate object detection and

semantic segmentation”, CVPR 2014.

Classify regions
with SVMs

Input
image

Conv
N
et

Conv
N
et

Conv
N
et

SVMs

SVMs

SVMs

Bbox reg

Bbox reg

Bbox reg

Predict “corrections” to the RoI: 4
numbers: (dx, dy, dw, dh)

“Slow” R-CNN

Lecture 15 - May 20, 2021145

Warped image regions
(224x224 pixels)

(RoI) from a
proposal method
(~2k)

Forward each
region through
ConvNet

Girshick et al, “Rich feature hierarchies for accurate object detection and

semantic segmentation”, CVPR 2014.

Classify regions
with SVMs

Input
image

Conv
N
et

Conv
N
et

Conv
N
et

SVMs

SVMs

SVMs

Bbox reg

Bbox reg

Bbox reg

Predict “corrections” to the RoI: 4
numbers: (dx, dy, dw, dh) Problem: Very

slow! Need to do

~2k independent

forward passes

for each image!

Idea: Pass the

image through

convnet before

cropping! Crop the

conv feature

instead!

Fast R-CNN
“Slow” R-CNN

May 20, 2021Fei-Fei Li, Ranjay Krishna, Danfei Xu 146

ConvNet

Input image

Run whole image
through ConvNet

“conv5” features

Crop + Resize features

Linear +
softmax

CNN Per-Region Network

Object
category

Linear Box offset

Girshick, “Fast R-CNN”, ICCV 2015.

Regions of
Interest (RoIs)
from a proposal
method

“Backbone”
network:
AlexNet, VGG,
ResNet, etc

Object Detection: Faster R-CNN

May 20, 2021

ROI pooling / ROI
Alignment creates fixed
size feature maps from
convolutional maps of
the ROI.

Instance Segmentation: Mask R-CNN

Mask Prediction

Lecture 15 - May 20, 2021Fei-Fei Li, Ranjay Krishna, Danfei Xu 148He et al, “Mask R-CNN”, ICCV 2017

Add a small mask

network that

operates on each

RoI and predicts a

28x28 binary mask

Mask R-CNN: Very Good Results!

He et al, “Mask R-CNN”, ICCV 2017

May 20, 2021

Summary: Lots of computer vision tasks!

Classification
Semantic

Segmentation
Object

Detection

Instance

Segmentation

CAT GRASS, CAT,

TREE, SKY
DOG, DOG, CAT DOG, DOG, CAT

No spatial extent Multiple ObjectNo objects, just pixels

May 20, 2021

References

• CS231n: Deep Learning for Computer Vision.
https://cs231n.stanford.edu/
Lecture slides, and lecture videos

• NPTEL course: Deep Learning for Computer Vision
Vineeth N Balasubramanian
https://onlinecourses.nptel.ac.in/noc20_cs88/preview

https://cs231n.stanford.edu/
https://onlinecourses.nptel.ac.in/noc20_cs88/preview

	Slide 1: CS60050: Machine Learning Neural Networks
	Slide 10: Neural Networks
	Slide 11: What is a Neuron?
	Slide 13: Activation functions
	Slide 14: Commonly used Activation functions
	Slide 15: Perceptron
	Slide 16
	Slide 17
	Slide 18
	Slide 19: Multi-layer Perceptrons
	Slide 20: Feed Forward Neural Networks
	Slide 21
	Slide 22: Hidden-Layer
	Slide 23
	Slide 24: Composition of Transformations
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30: Hidden-Layer
	Slide 31: Deep Neural Networks
	Slide 32: Deep Neural Networks – hierarchical features
	Slide 33: Shallow to Deep Neural Networks
	Slide 34: Training a Neural Network
	Slide 35: How to learn the weights ?
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54: Going from Shallow to Deep Neural Networks
	Slide 55
	Slide 56
	Slide 57
	Slide 58: Computational Graph
	Slide 59: Backpropagation for neural nets
	Slide 60: Backpropagation for neural nets: forward pass
	Slide 61: Backpropagation for neural nets: backward pass
	Slide 62: Computation Graphs
	Slide 63: Convolutional neural networks
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88: ConvNet: CONV, RELU, POOL and FC Layers
	Slide 89: Convolution Layer
	Slide 90: Convolution Layer
	Slide 91: Convolution Layer
	Slide 92: ReLU (Rectified Linear Units) Layer
	Slide 93: A Basic ConvNet
	Slide 94: What is convolution of an image with a filter
	Slide 95: Details about the convolution layer
	Slide 96: Details about the convolution layer
	Slide 97: Details about the convolution layer
	Slide 98: Convolution layer examples
	Slide 99: Pooling Layer
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104: ConvNet: CONV, RELU, POOL and FC Layers
	Slide 105: ConvNet: CONV, RELU, POOL and FC Layers
	Slide 106: Evolution of model architecures
	Slide 107: ImageNet Large Scale Visual Recognition Challenge (ILSVRC)
	Slide 108
	Slide 109: AlexNet
	Slide 110: AlexNet
	Slide 111: ILSVRC winners
	Slide 112: VGGNet
	Slide 113: VGGNet
	Slide 114: ILSVRC winners
	Slide 115: GoogleNet
	Slide 116: GoogleNet
	Slide 117: ILSVRC winners
	Slide 118: ResNet
	Slide 119: ResNet
	Slide 120: ResNet
	Slide 121: ResNet
	Slide 122: ResNet
	Slide 123: ResNet
	Slide 124: ResNet
	Slide 125: ILSVRC winners
	Slide 126: Architectures for advanced applications
	Slide 127: Computer Vision Tasks
	Slide 128: Semantic Segmentation
	Slide 129: Semantic Segmentation: The Problem
	Slide 130: Semantic Segmentation Idea: Sliding Window
	Slide 131: Semantic Segmentation Idea: Sliding Window
	Slide 132: Semantic Segmentation Idea: Convolution
	Slide 133: Semantic Segmentation Idea: Fully Convolutional
	Slide 134: Semantic Segmentation Idea: Fully Convolutional
	Slide 135: Semantic Segmentation Idea: Fully Convolutional
	Slide 136: Semantic Segmentation Idea: Fully Convolutional
	Slide 137: Object detection
	Slide 138: Object Detection
	Slide 139: Object Detection: Single Object (Classification + Localization)
	Slide 140: Object Detection: Single Object (Classification + Localization)
	Slide 141: Each image needs a different number of outputs!
	Slide 142: Object Detection: Multiple Objects
	Slide 143: Region Proposals: Selective Search
	Slide 144: “Slow” R-CNN
	Slide 145: “Slow” R-CNN
	Slide 146: Fast R-CNN
	Slide 147: Object Detection: Faster R-CNN
	Slide 148: Instance Segmentation: Mask R-CNN
	Slide 149: Mask R-CNN: Very Good Results!
	Slide 150: Summary: Lots of computer vision tasks!
	Slide 151: References

