CS60050: Machine Learning

Clustering
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CLUSTERING APPLICATIONS



Supervised vs Unsupervised
learning

- Supervised learning: Given (xi,Vi),i =1,...,n, learn a
functionf : X ! Y.

- Categorical Y : classification
- Continuous Y : regression

- Unsupervised learning: Given only (xj),i = 1,...,n, can
we infer the underlying structure of X ?



Why do unsupervised learning?

Raw data cheap. Labeled data expensive.

Save memory/computation.

Reduce noise in high-dimensional data.

Useful in exploratory data analysis.

Often a pre-processing step for supervised learning.



Cluster analysis

Discover groups such that samples within a group are more
similar to each other than samples across groups.
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Cluster analysis

Discover groups such that samples within a group are more
similar to each other than samples across groups.
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Image Segmentation

http://people.cs.uchicago.edu/ pff/segment



http://people.cs.uchicago.edu/

Human population structure
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Clustering Web?2.0 workloads
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Clustering graphs

Finding
communities in
social networks

Newman, 2008



Vector quantization to compress images

Original image

Bishop, PRML




Ingredients of cluster analysis

- A dissimilarity function between samples.
-+ Aloss function to evaluate clusters.
- Algorithm that optimizes this loss function.



The Dissimilarity function

- Choice of dissimilarity function is application dependent.
- Need to consider the type of features.
- Categorical, ordinal or quantitative.

- Possible to learn dissimilarity from data (later).



Dissimilarity based on features

- Data point x; has features x;,] = 1,...,p.

« One choice of dissimilarity function is the Euclidean
distance

p
D(xi, xir) = J Z (Xjj — Xf"j)2

j=1

- Resulting clusters invariant to rotation and translation of
features but not to scaling.

« |f the features have different scales, standardize the data.



Standardization

Without standardization With standardization



Standardization not always helpful
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K-MEANS CLUSTERING



K-means: Idea

» K clusters each summarized by a prototype u.
- Assignment of data x; to a cluster represented by

K
responsibilities  ry € {0,1} with ) " rj = 1.

k=1
- An example with 4 data points and 3 clusters.
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K-means: minimizing the loss
function

- How do we minimize J w.r.t (ik, tx)?

 Chicken and egg problem

- If prototypes known, can assign responsibilities.
- If responsibilities known, can compute prototypes.

- We use an iterative procedure.



K-means: minimizing the loss
function

E-step: FiX ux, minimize J w.r.t. ri.
- Assign each data point to its nearest prototype.
M-step: FiX ri, minimize J w.r.t. u.

- Set each prototype to the mean of the points in that cluster,
> i likXi

>l
This procedure is guaranteed to converge.

Converges to a local minimum.

- Use different initializations and pick the best solution.
- May still be insufficient for large search spaces.
- Other ways include a split-merge approach.

i.e., Uk =



How do we initialize K-means?

« Some heuristics

- Randomly pick K data points as prototypes.
- Pick prototype i + 1 to be farthest from prototypes {1,...,1}.



K-means Execution Example
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K-means Execution Example
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Loss function J after each iteration
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How to choose K ?

- Like choosing K in KNN.
- The loss function J generally decreases with K.
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How to choose K ?

- Gap statistic

- Cross-validation: Partition data into two sets. Estimate
prototypes on one and use these to compute the loss
function on the other.

- Stabllity of clusters: Measure the change in the clusters
obtained by resampling or splitting the data.

- Non-parametric approach: Place a prior on K. More
details in the Bayesian non-parametric lecture.



Limitations of K-means

Hard assignments of data points to clusters can cause a small
perturbation to a data point to flip it to another  cluster.

- Solution: GMM

Assumes spherical clusters and equal probabilities for each
cluster.

- Solution: GMM
Clusters change arbitrarily for different K.
- Solution: Hierarchical clustering
Sensitive to outliers.
- Solution: Use a robust loss function.
» Works poorly on non-convex clusters.
- Solution: Spectral clustering.



GAUSSIAN MIXTURE MODELS



Mixture of Gaussians

e z € {0,1}X: be a discrete latent variable, such
that )., z, = 1.

e 7). selects the cluster (mixture component)
from which the data point is generated.

e There are K Gaussian distributions:
N(xl,ul,Zl)

N(xllul{i ZK)



Mixture of Gaussians

* Given a data point x:
K

PCO = ) i N (it %)
k=1
e Where:
T = P(zx = 1)



Generative Procedure

Select z from probability distr. 1.
Hence: P(z) = [Th=1 T X

Given z, generate x according to the
conditional distr.:

P(x|zx = 1) = NV (x|uk, Zk)

Hence:
K

P(x|z) = H(N(ka»Zk))Zk

k=1



Generative Procedure

e Joint distr.:
P(x,z) = p(z)p(x|z)

K
= H(ﬂkN(xluk, Zk))Zk
k=1

e Marginal:
K
=1

p(x) — Ep(x' Z) — Z ﬂkN(Xl,le,Zk)
Z k



Posterior distribution

7, = 1 given x:

Y(zk) = plzp = 1jx) =
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Max-likelihood

Let D = {xl, ...,xN}
Likelihood function:

N K
POIm D) = | | ) melV Galiis T
n=1k=1

Log likelihood:

N K
In(P(DIm, 1, 5)) = D I M (el Ei))
n=1 k=1

Maximize log-likelihood w.r.t. T, u and X.



KKT conditions

e Differentiating w.r.t. uy:

ﬂ“-i.!.,, EL}
P(Xn — o
Zz” ikl 357 20 4

:{"’HL:]
 Multiplying by Z,:lz

* Where: -



KKT conditions

e Similarly, differentiating w.r.t. X:

Jﬁ'i'r

* Lagrangian w.r.t. my:

H
Inp(X|m, pn, X))+ A (Z Tk — 1)

k=1



Minimizing:
N .
N (Xn|pp: Xi)
U _
; Z; TN (Xn |1, 25)
Multiplying with ;. and adding over k: A =
— N.
Ny
Hence =7
N
Where N =) 7(2nk)

KKT conditions




(EM) Algorithm
Initialize uy,, 2; and my.
E-step: (o) = ﬂ N (Xn |y, Zi)

Z (Xn gy, 25)

N
. W J'
M-Step. _I.LEQ — ?Z (ﬂ-ﬂ.{:)xﬂ
Yk n=1
R
_— W w1
Ep = "\_Z ((2nk) (Xn — pp ) (Xn — pg" )
Nk n=1
S 1"
k N

Repeat above two steps till In(P(D|m, u, X))
converges.
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HIERARCHICAL CLUSTERING



Hierarchical Clustering

- K-means clustering requires us to pre-specify the number
of clusters K. This can be a disadvantage (later we discuss
strategies for choosing K)

- Hierarchical clustering is an alternative approach which

does not require that we commit to a particular choice of
K. 3

- In this section, we describe bottom-up or agglomerative
clustering. This is the most common type of hierarchical
clustering, and refers to the fact that a dendrogram is built
starting from the leaves and combining clusters up to the
trunk.



Hierarchical Clustering: the idea
Builds a hierarchy in a “bottom-up” fashion...




Hierarchical Clustering Algorithm

The approach in words:
- Start with each point in its own cluster.
- Identify the closest two clusters and merge them.
- Repeat.
- Ends when all points are in a single cluster.

Dendrogram




An Example

45 observations generated in 2-dimensional space. In reality
there are three distinct classes, shown in separate colors.
However, we will treat these class labels as unknown and will
seek to cluster the observations in order to discover the classes
from the data.
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Details of previous figure

- Left: Dendrogram obtained from hierarchically clustering
the data from previous slide, with complete linkage and
Euclidean distance.

- Center: The dendrogram from the left-hand panel, cut at a
height of 9 (indicated by the dashed line). This cut results
in two distinct clusters, shown in di¢erent colors.

- Right: The dendrogram from the left-hand panel, now cut
at a height of 5. This cut results in three distinct clusters,
shown in di<¢erent colors. Note that the colors were not
used in clustering, but are simply used for display purposes
in this figure



Types of Linkage
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Cluster Dissimilarity

- Dissimilarity for two disjoint groups G and H, d(G, H) is
computed from pairwise dissimilarities D(i, j),i inG,j € H.
- Single linkage: tends to yield extended clusters.

Dsi (G, H) = minicg jcHD(i,])
+ Complete linkage: tends to yield round clusters.
DCL(G: H) = maXEEG,fEHD(i:j)

+ Group average: tradeoff between the two. Not invariant
under monotone increasing transform.

Dga(G, H) = 1 > D(i,))

Nan
G'H jcGieH




Comparison
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.
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Choice of Dissimilarity Measure

- So far have used Euclidean distance.
- An alternative is correlation-basad distance which considers

two observations to be similar if their features are highly
correlated.

- This is an unusual use of correlation, which is normally
computed between variables; here it is computed between
the observation profiles for each pair of observations.

20
|

Observa tion 1
® Observai tion 2
Observa tion 3

10
|




Example: breast cancer microarray study

- “Repeated observation of breast tumor subtypes in independent
gene expression data sets;” Sorlie at el, PNAS 2003

- Gene expression measurements for about «-8000 genes, for each
of 88 breast cancer patients.

- Average linkage, correlation metric

- Clustered samples using 500 intrinsic genes: each woman
was measured before and after chemotherapy. Intrinsic  genes
have smallest within/between variation.
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SPECTRAL CLUSTERING



Data Clustering

e [wo different criteria

e Compactness, e.g., k-means, mixture models
« Connectivity, e.g., spectral clustering
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Graph Clustering

Goal: Given data points X, ..., Xn and similarities w(Xi,X;), partition the data into
groups so that points in a group are similar and points in different groups are
dissimilar.

Similarity Graph: G(V,E,W) V — Vertices (Data points)
E — Edge if similarity > 0
W - Edge weights (similarities)
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Data Similarity graph

Partition the graph so that edges within a group have large weights and
edges across groups have small weights.




Similarity graph construction

Similarity Graphs: Model local neighborhood relations between data points

E.g. Gaussian kernel similarity function
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Partitioning a graph into two clusters

Min-cut: Partition graph into two sets Aand B such that weight of edges
connecting vertices in Ato vertices in B is minimum.

cut(A, B) == 3 icajc Wi

» Easy to solve O(VE) algorithm
» Not satisfactory partition — often isolates vertices

T,
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Partitioning a graph into two clusters

Partition graph into two sets Aand B such that weight of edges connecting
vertices in Ato vertices in B is minimum & size of Aand B are very similar.

cut(A, B) =)

€A, je

Normalized cut:

Ncut(A, B) := cut(A, B)(vﬂljif.-‘-’l} +

'_l
S’
f —

vol (B

vol(A) => ., di

But NP-hard to solve!!
Spectral clustering is a relaxation of these.



Normalized Cut and Graph Laplacian

Neut(A, B) = cut(A, B) (i + waisy)

—

et f=I[f,f,..f,]T with fi= | (gl ificA
h 1 e .
~ VoI (B) if 1€ B

—

1 1)’

ij 1€A,JEB

di di 1 1

THf — £2 — =
TP ;d@fz % vol(A)?2 %9 voI(BY? ~ vol(A) T vol(B)
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Ncut(A, B)= _—

fI'Df



Normalized Cut and Graph Laplacian

. . fTLf
min = min
Ncut(A, B) T
] Soiny Ti€A
where f=[f,f,..f]JT with f=_ g )
\_—VOI(B) ife€ B
T
Relaxation: min £~ Lf s.t. fiD1=0
fI'Df

Solution: f—second eigenvector of generalized eval problem

Lf = ADf

Obtain cluster assignments by thresholding fat 0



Approximation of Normalized cut

Ncut(A, B) = CUt(Av B)(W&A} i val}iﬁ})

Let f be the eigenvector corresponding to the second smallest eval of the
generalized eval problem.

Lf = ADf

Equivalent to eigenvector corresponding to the second smallest eval of the
normalized Laplacian U'=D-IL = |- D-1W

Recover binary partition as follows: ieA if fi=0
ieB if fi<O
Ideal solution Relaxed solution
cecooooec b:co%

R —— " Rocuooon,




Example

Xing et al 2001

input affinity matrix affinity matrix reordered according to solution vector
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How to partition a graph into k clusters?



Spectral Clustering Algorithm

Input: Similarity matrix W, number k of clusters to construct

e Build similarity graph

e Compute the first k eigenvectors vq, ..., v, of the matrix
L for unnormalized spectral clustering
L for normalized spectral clustering

e Build the matrix V € R™* with the eigenvectors as columns

e Interpret the rows of V as new data points Z; € R*
Vi Vo V3

Z1 | vii vi2 w3 Dimensionality Reduction
- : : : nxn —nxk

Z n Vil Vo Vi3

e Cluster the points Z; with the k-means algorithm in R



Eigenvectors of Graph Laplacian

Eigenvector 1 Eig
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« 1st Eigenvector is the all ones vector 1 (if graph is connected)
« 2nd Ejgenvector thresholded at O separates first two clusters from last two
« k-means clustering of the 4 eigenvectors identifies all clusters



Why does it work?

Data are projected into a lower-dimensional space (the spectral/eigenvector
domain) where they are easily separable, say using k-means.

Original data Projected data

Graph has 3 connected components — first three eigenvectors are constant
(all ones) on each component.



Understanding Spectral Clustering

e If graphisconnected, first Laplacian evec is constant (all 1s)

e Ifgraphisdisconnected (k connected components), Laplacian
is block diagonal and first k Laplacian evecs are:

0 0
f 1 5
e o f L — L2 : O 1 O
OR O
; : 1

First three eigenvectors




Understanding Spectral Clustering

e Isall hope lost if clusters don’t correspond to connected
components of graph? No!

e If clusters are connected loosely (small off-block diagonal
enteries), then 1st Laplacian even is all 1s, but second evec
gets first cut (min normalized cut)
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Why does it work?

Block weight matrix (disconnected graph) results in block eigenvectors:

11

0

)

0

0
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W fy

1
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Normalized to
have unit norm

Slight perturbation does not change span of eigenvectors significantly:

1 1 2 0 B0
1 1 0 1 .50
2 0 1 1 .50
0 A 1 1 .50
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indicates blocks



Why does it work?

Can put data points into blocks using eigenvectors:

W 1:1 f2

Embedding is same regardless of data ordering:

12|10 50 A7 f
1o |1 |1 50 -4
1 |1 0.1 50 5
S I I I | 50 -5
W f f5



Understanding Spectral Clustering

e Isall hope lost if clusters don’t correspond to connected
components of graph? No!

e If clusters are connected loosely (small off-block diagonal
enteries), then 1st Laplacian even is all 1s, but second evec
gets first cut (min normalized cut)

Ncut(A, B) := cut(A, B)(vﬂﬂfa‘i} * 15})

vol

e What about more than two clusters?

eigenvectors f,, ..., f,,; are solutions of following normalized
cut:

Demo: http://www.ml.uni-saarland.de/GraphDemo/DemoSpectralClustering.html



http://www.ml.uni-saarland.de/GraphDemo/DemoSpectralClustering.html

k-means vs Spectral clustering

Applying k-means to laplacian eigenvectors allows us to find cluster with
non-convex boundaries.
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Both perform same Spectral clustering is superior



k-means vs Spectral clustering

Applying k-means to laplacian eigenvectors allows us to find cluster with
non-convex boundaries.

Points of two clusters Points of two clusters
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k-means vs Spectral clustering

Applying k-means to laplacian eigenvectors allows us to find cluster with
non-convex boundaries.

Similarity matrix
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Examples

Ng et al 2001

sguiggles, 4 clusters

nips, & clusters
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Examples (Choice of k)

threscircles—joined, 2 clusters

Ng et al 2001

threscircles—joined, 2 clusters




Some Issues

» Choice of number of clusters k
Most stable clustering is usually given by the value of k that
maximizes the eigengap (difference between consecutive
eigenvalues)

Ay = ‘kk — Kk—l‘
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Some Issues

» Choice of number of clusters k

» Choice of similarity
choice of kernel
for Gaussian kernels, choice of o

input affinity matrix mnput affinity matrix affinity matrix reorderad according to solution vector

the partition accarding to the solution vector
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Some Issues

» Choice of number of clusters k
» Choice of similarity
choice of kernel
for Gaussian kernels, choice of o

» Choice of clustering method — k-way vs. recursive bipartite



Spectral clustering summary

 Algorithms that cluster points using eigenvectors of matrices
derived from the data

1 Useful in hard non-convex clustering problems

1 Obtain data representation in the low-dimensional space
that can be easily clustered

1 Variety of methods that use eigenvectors of unnormalized or
normalized Laplacian, differ in how to derive clusters from
eigenvectors, k-way vs repeated 2-way

 Empirically very successful
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