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CLUSTERING APPLICATIONS



Supervised vs Unsupervised
learning

• Supervised learning: Given (xi , yi ), i = 1,. . . , n, learn a 
function f : X ! Y .

• Categorical Y : classification
• Continuous Y : regression

• Unsupervised learning: Given only (xi ), i = 1,. . . , n, can 
we infer the underlying structure of X?
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Why do unsupervised learning?

• Raw data cheap. Labeled data expensive.
• Save memory/computation.
• Reduce noise in high-dimensional data.
• Useful in exploratory data analysis.
• Often a pre-processing step for supervised learning.
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Cluster analysis

Discover groups such that samples within a group are more 
similar to each other than samples across groups.
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Cluster analysis

Discover groups such that samples within a group are more 
similar to each other than samples across groups.

.
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Image Segmentation

http://people.cs.uchicago.edu/ pff/segment
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Human population structure
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Clustering Web2.0 workloads
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Clustering graphs

Newman, 2008
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Finding 
communities in 
social networks



Vector quantization to compress images

Bishop, PRML



Ingredients of cluster analysis

• A dissimilarity function between samples.
• A loss function to evaluate clusters.
• Algorithm that optimizes this loss function.

Clustering



The Dissimilarity function

• Choice of dissimilarity function is application dependent.
• Need to consider the type of features.

• Categorical, ordinal or quantitative.
• Possible to learn dissimilarity from data (later).
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Dissimilarity based on features

• Data point xi has features xij , j = 1,. . . , p.
• One choice of dissimilarity function is the Euclidean

distance

• Resulting clusters invariant to rotation and translation of 
features but not to scaling.

• If the features have different scales, standardize the data.
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Standardization
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Standardization not always helpful

Without standardization With standardization
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K-MEANS CLUSTERING



K-means: Idea
• K clusters each summarized by a prototype µk .
• Assignment of data xi to a cluster represented by

responsibilities

• An example with 4 data points and 3 clusters.

• Loss function J =
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• How do we minimize J w.r.t (rik ,µk )?
• Chicken and egg problem

• If prototypes known, can assign responsibilities.
• If responsibilities known, can compute prototypes.

• We use an iterative procedure.

K-means: minimizing the loss 
function



K-means: minimizing the loss 
function

• E-step: Fix µk , minimize J w.r.t. rik .
• Assign each data point to its nearest prototype.

• M-step: Fix rik , minimize J w.r.t. µk .
• Set each prototype to the mean of the points in that cluster,

• This procedure is guaranteed to converge.
• Converges to a local minimum.

• Use different initializations and pick the best solution.
• May still be insufficient for large search spaces.
• Other ways include a split-merge approach.
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How do we initialize K-means?

• Some heuristics
• Randomly pick K data points as prototypes.
• Pick prototype i + 1 to be farthest from prototypes {1,. .. , i}.
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Loss function J after each iteration
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How to choose K ?
• Like choosing K in kNN.
• The loss function J generally decreases with K .
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How to choose K ?

• Gap statistic
• Cross-validation: Partition data into two sets. Estimate 

prototypes on one and use these to compute the loss 
function on the other.

• Stability of clusters: Measure the change in the clusters 
obtained by resampling or splitting the data.

• Non-parametric approach: Place a prior on K . More 
details in the Bayesian non-parametric lecture.
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• Hard assignments of data points to clusters can cause a small
perturbation to a data point to flip it to another cluster.

• Solution: GMM
• Assumes spherical clusters and equal probabilities for each

cluster.
• Solution: GMM

• Clusters change arbitrarily for different K .
• Solution: Hierarchical clustering

• Sensitive to outliers.
• Solution: Use a robust loss function.

• Works poorly on non-convex clusters.
• Solution: Spectral clustering.

Limitations of K-means



GAUSSIAN MIXTURE MODELS



Mixture of Gaussians

• 𝑧𝑧 ∈ 0,1 𝐾𝐾: be a discrete latent variable, such 
that ∑𝑘𝑘 𝑧𝑧𝑘𝑘 = 1.

• 𝑧𝑧𝑘𝑘 selects the cluster (mixture component) 
from which the data point is generated.

• There are K Gaussian distributions:
𝒩𝒩 𝑥𝑥 𝜇𝜇1,Σ1
…
𝒩𝒩(𝑥𝑥|𝜇𝜇𝐾𝐾 , Σ𝐾𝐾)



Mixture of Gaussians

• Given a data point 𝑥𝑥:

𝑃𝑃 𝑥𝑥 = �
𝑘𝑘=1

𝐾𝐾

𝜋𝜋𝑘𝑘 𝒩𝒩(𝑥𝑥|𝜇𝜇𝑘𝑘 , Σ𝑘𝑘)

• Where:
𝜋𝜋𝑘𝑘 = 𝑃𝑃(𝑧𝑧𝑘𝑘 = 1)



Generative Procedure

• Select z from probability distr. 𝜋𝜋𝑘𝑘.
• Hence: 𝑃𝑃 𝑧𝑧 = ∏𝑘𝑘=1

𝐾𝐾 𝜋𝜋𝑘𝑘
𝑧𝑧𝑘𝑘.

• Given z, generate x according to the 
conditional distr.:

𝑃𝑃 𝑥𝑥 𝑧𝑧𝑘𝑘 = 1 = 𝒩𝒩(𝑥𝑥|𝜇𝜇𝑘𝑘 , Σ𝑘𝑘)
• Hence:

𝑃𝑃 𝑥𝑥 𝑧𝑧 = �
𝑘𝑘=1

𝐾𝐾

𝒩𝒩 𝑥𝑥 𝜇𝜇𝑘𝑘 , Σ𝑘𝑘
𝑧𝑧𝑘𝑘



Generative Procedure

• Joint distr.:
𝑃𝑃 𝑥𝑥, 𝑧𝑧 = 𝑝𝑝 𝑧𝑧 𝑝𝑝 𝑥𝑥 𝑧𝑧

= �
𝑘𝑘=1

𝐾𝐾

𝜋𝜋𝑘𝑘𝒩𝒩 𝑥𝑥 𝜇𝜇𝑘𝑘 , Σ𝑘𝑘
𝑧𝑧𝑘𝑘

• Marginal:

𝑝𝑝 𝑥𝑥 = �
𝑧𝑧

𝑝𝑝(𝑥𝑥, 𝑧𝑧) = �
𝑘𝑘=1

𝐾𝐾

𝜋𝜋𝑘𝑘𝒩𝒩(𝑥𝑥|𝜇𝜇𝑘𝑘 , Σ𝑘𝑘)



Posterior distribution

• 𝑧𝑧𝑘𝑘 = 1 given 𝑥𝑥:



Example



Max-likelihood

• Let 𝐷𝐷 = {𝑥𝑥1, … , 𝑥𝑥𝑁𝑁}
• Likelihood function:

𝑃𝑃 𝐷𝐷 𝝅𝝅,𝝁𝝁,𝚺𝚺 = �
𝑛𝑛=1

𝑁𝑁

�
𝑘𝑘=1

𝐾𝐾

𝜋𝜋𝑘𝑘𝒩𝒩(𝑥𝑥𝑛𝑛|𝜇𝜇𝑘𝑘 , Σ𝑘𝑘)

• Log likelihood:

ln 𝑃𝑃 𝐷𝐷 𝝅𝝅,𝝁𝝁,𝚺𝚺 = �
𝑛𝑛=1

𝑁𝑁

ln(�
𝑘𝑘=1

𝐾𝐾

𝜋𝜋𝑘𝑘𝒩𝒩(𝑥𝑥𝑛𝑛|𝜇𝜇𝑘𝑘 ,Σ𝑘𝑘))

• Maximize log-likelihood w.r.t. 𝝅𝝅,𝝁𝝁 and 𝚺𝚺.



KKT conditions

• Differentiating w.r.t. 𝜇𝜇𝑘𝑘:

• Multiplying by Σ𝑘𝑘−1:

• Where: 



KKT conditions

• Similarly, differentiating w.r.t. Σ𝑘𝑘:

• Lagrangian w.r.t. 𝜋𝜋𝑘𝑘:



KKT conditions

• Minimizing:

• Multiplying with 𝜋𝜋𝑘𝑘 and adding over k: 𝜆𝜆 =
−𝑁𝑁.

• Hence:

• Where:



(EM) Algorithm
• Initialize 𝜇𝜇𝑘𝑘, Σ𝑘𝑘 and 𝜋𝜋𝑘𝑘.
• E-step: 

• M-step:

• Repeat above two steps till ln 𝑃𝑃 𝐷𝐷 𝝅𝝅,𝝁𝝁,𝚺𝚺
converges.



Example



HIERARCHICAL CLUSTERING



Hierarchical Clustering

49 /

50

• K-means clustering requires us to pre-specify the number
of clusters K . This can be a disadvantage (later we discuss 
strategies for choosing K)

• Hierarchical clustering is an alternative approach which 
does not require that we commit to a particular choice of 
K .

• In this section, we describe bottom-up or agglomerative 
clustering. This is the most common type of hierarchical 
clustering, and refers to the fact that a dendrogram is built 
starting from the leaves and combining clusters up to the 
trunk.



Hierarchical Clustering: the idea
Builds a hierarchy in a “bottom-up” fashion...
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Hierarchical Clustering Algorithm
The approach in words:
• Start with each point in its own cluster.
• Identify the closest two clusters and merge them.
• Repeat.
• Ends when all points are in a single cluster.

Dendrogram
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An Example

−6
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45 observations generated in 2-dimensional space. In reality 
there are three distinct classes, shown in separate colors.
However, we will treat these class labels as unknown and will 
seek to cluster the observations in order to discover the classes 
from the data.



Application of hierarchical clustering
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Details of previous figure
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• Left: Dendrogram obtained from hierarchically clustering 
the data from previous slide, with complete linkage and 
Euclidean distance.

• Center: The dendrogram from the left-hand panel, cut at a
height of 9 (indicated by the dashed line). This cut results 
in two distinct clusters, shown in di↵erent colors.

• Right: The dendrogram from the left-hand panel, now cut
at a height of 5. This cut results in three distinct clusters, 
shown in di↵erent colors. Note that the colors were not
used in clustering, but are simply used for display purposes 
in this figure



Types of Linkage
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Linkage Description

Complete

Maximal inter-cluster dissimilarity. Compute all pairwisedissimilarities between the observations in cluster A and theobservations in cluster B, and record the largest of thesedissimilarities.

Single

Minimal inter-cluster dissimilarity. Compute all pairwisedissimilarities between the observations in cluster A and theobservations in cluster B, and record the smallest of thesedissimilarities.

Average

Mean inter-cluster dissimilarity. Compute all pairwisedissimilarities between the observations in cluster A and theobservations in cluster B, and record the average of thesedissimilarities.

Centroid
Dissimilarity between the centroid for cluster A (a mean
vector of length p) and the centroid for cluster B. Cen- troid
linkage can result in undesirable inversions.



Cluster Dissimilarity



Comparison



Choice of Dissimilarity Measure
• So far have used Euclidean distance.
• An alternative is correlation-based distance which considers 

two observations to be similar if their features are highly 
correlated.

• This is an unusual use of correlation, which is normally 
computed between variables; here it is computed between 
the observation profiles for each pair of observations.
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Example: breast cancer microarray study

60 / 50

• “Repeated observation of breast tumor subtypes in independent
gene expression data sets;” Sorlie at el, PNAS 2003

• Gene expression measurements for about ⇠8000 genes, for each
of 88 breast cancer patients.

• Average linkage, correlation metric
• Clustered samples using 500 intrinsic genes: each woman 

was measured before and after chemotherapy. Intrinsic genes
have smallest within/between variation.
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SPECTRAL CLUSTERING



Data Clustering



Graph Clustering
Goal: Given data points X1, …, Xn and similarities w(Xi,Xj), partition the data into 
groups so that points in a group are similar and points in different groups are 
dissimilar.

Similarity Graph: G(V,E,W) V – Vertices (Data points) 
E – Edge if similarity > 0
W - Edge weights (similarities)

Similarity graph

Partition the graph so that edges within a group have large weights and 
edges across groups have small weights.



Similarity graph construction
Similarity Graphs: Model local neighborhood relations between data points

E.g. Gaussian kernel similarity function

Controls size of neighborhood

Data clustering

Wij



Partitioning a graph into two clusters
Min-cut: Partition graph into two sets A and B such that weight of edges 
connecting vertices in A to vertices in B is minimum.

• Easy to solve O(VE) algorithm
• Not satisfactory partition – often isolates vertices



Partition graph into two sets A and B such that weight of edges connecting 
vertices in A to vertices in B is minimum & size of A and B are very similar.

Normalized cut:

But NP-hard to solve!!
Spectral clustering is a relaxation of these.

Partitioning a graph into two clusters



Let f = [f1 f2 … fn]T with fi =

Normalized Cut and Graph Laplacian



Normalized Cut and Graph Laplacian

min = min

where f = [f1 f2 … fn]T with fi =

Relaxation: min s.t. fTD1 = 0

Solution: f – second eigenvector of generalized eval problem

Obtain cluster assignments by thresholding f at 0



Approximation of Normalized cut

Let f be the eigenvector corresponding to the second smallest eval of the 
generalized eval problem.

Equivalent to eigenvector corresponding to the second smallest eval of the
normalized Laplacian L’ = D-1L = I - D-1W

Recover binary partition as follows: i є A if fi ≥ 0
i є B if fi < 0

Ideal solution Relaxed solution



Example
Xing et al 2001



How to partition a graph into k clusters?



Spectral Clustering Algorithm
W,

L’

Dimensionality Reduction
n x n → n x k



Eigenvectors of Graph Laplacian

• 1st Eigenvector is the all ones vector 1 (if graph is connected)
• 2nd Eigenvector thresholded at 0 separates first two clusters from last two
• k-means clustering of the 4 eigenvectors identifies all clusters



Why does it work?
Data are projected into a lower-dimensional space (the spectral/eigenvector 
domain) where they are easily separable, say using k-means.

Original data Projected data

Graph has 3 connected components – first three eigenvectors are constant
(all ones) on each component.



Understanding Spectral Clustering
• If graph is connected, first Laplacian evec is constant (all 1s)
• If graph is disconnected (k connected components), Laplacian

is block diagonal and first k Laplacian evecs are:

L =
L1

L2

L3

0

0

First three eigenvectors

1

1

1
0

…

0

…0
0

…0
0

0

…

0
OR



Understanding Spectral Clustering
• Is all hope lost if clusters don’t correspond to connected 

components of graph? No!
• If clusters are connected loosely (small off-block diagonal 

enteries), then 1st Laplacian even is all 1s, but second evec 
gets first cut (min normalized cut)
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1st evec is constant 
since graph is connected

Sign of 2nd evec 
indicates blocks



Why does it work?
Block weight matrix (disconnected graph) results in block eigenvectors:

Normalized to 
have unit norm

W f1 f2
Slight perturbation does not change span of eigenvectors significantly:

.50 .47

.1 .50 .52

.50 -.47

.1 .50 -.52

1st evec is constant 
since graph is connected

Sign of 2nd evec 
indicates blocks



Why does it work?
Can put data points into blocks using eigenvectors:

W f1 f2

Embedding is same regardless of data ordering:

.50 .47

.1 .50 .52

.50 -.47

.1 .50 -.52
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Understanding Spectral Clustering
• Is all hope lost if clusters don’t correspond to connected 

components of graph? No!
• If clusters are connected loosely (small off-block diagonal 

enteries), then 1st Laplacian even is all 1s, but second evec 
gets first cut (min normalized cut)

• What about more than two clusters?
eigenvectors f2, …, fk+1 are solutions of following normalized
cut:

Demo: http://www.ml.uni-saarland.de/GraphDemo/DemoSpectralClustering.html

http://www.ml.uni-saarland.de/GraphDemo/DemoSpectralClustering.html


k-means vs Spectral clustering
Applying k-means to laplacian eigenvectors allows us to find cluster with 
non-convex boundaries.

Both perform same Spectral clustering is superior



k-means vs Spectral clustering
Applying k-means to laplacian eigenvectors allows us to find cluster with 
non-convex boundaries.

Spectral clustering outputk-means output



k-means vs Spectral clustering
Applying k-means to laplacian eigenvectors allows us to find cluster with 
non-convex boundaries.

Similarity matrix

Second eigenvector of graph Laplacian



Examples
Ng et al 2001



Examples (Choice of k)
Ng et al 2001



Some Issues
 Choice of number of clusters k

Most stable clustering is usually given by the value of k that 
maximizes the eigengap (difference between consecutive 
eigenvalues)

−λk−1∆k = λk



Some Issues
 Choice of number of clusters k

 Choice of similarity
choice of kernel
for Gaussian kernels, choice of σ

Good similarity measure Poor similarity measure



Some Issues
 Choice of number of clusters k

 Choice of similarity
choice of kernel
for Gaussian kernels, choice of σ

 Choice of clustering method – k-way vs. recursive bipartite



Spectral clustering summary
Algorithms that cluster points using eigenvectors of matrices

derived from the data

Useful in hard non-convex clustering problems

Obtain data representation in the low-dimensional space
that can be easily clustered

 Variety of methods that use eigenvectors of unnormalized or
normalized Laplacian, differ in how to derive clusters from
eigenvectors, k-way vs repeated 2-way

 Empirically very successful
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