CS60050: Machine Learning

Sourangshu Bhattacharya

CROSS-VALIDATION

The test set method

Good news:

- •Very very simple
- •Can then simply choose the method with the best test-set score
- Bad news:
- •What's the downside?

The test set method

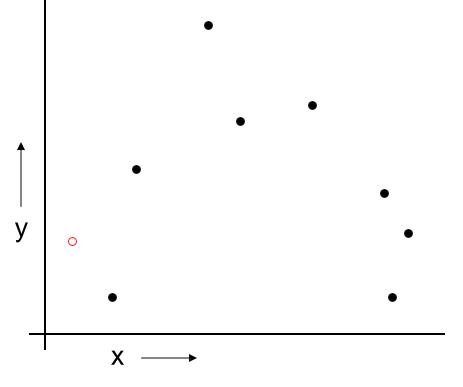
Good news:

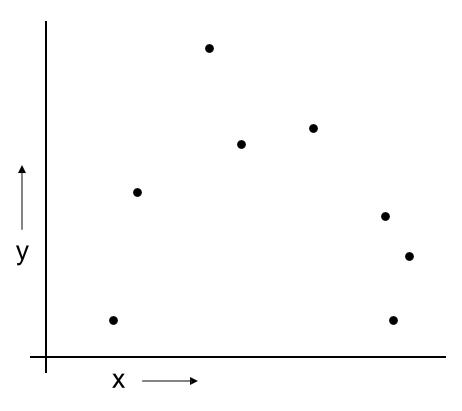
- Very very simple
- •Can then simply choose the method with the best test-set score
- Bad news:
- •Wastes data: we get an estimate of the best method to apply to 30% less data
- If we don't have much data, our test-set might just be lucky or unlucky

We say the "test-set estimator of performance has high variance"

For k=1 to R

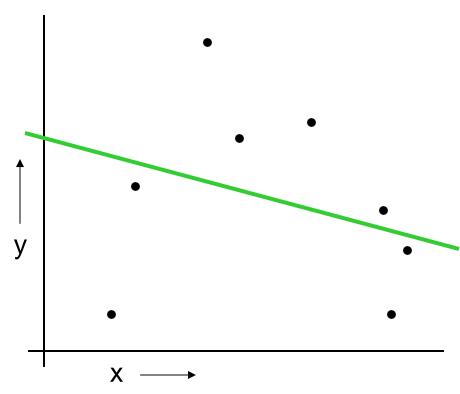
1. Let (x_k, y_k) be the kth record





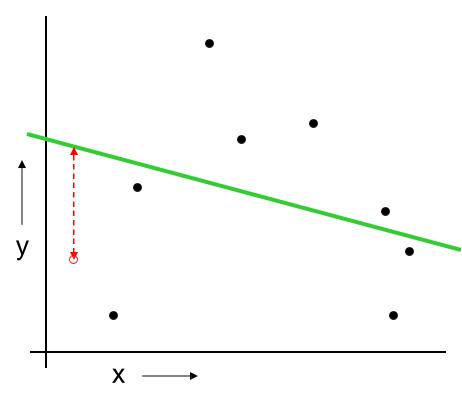
For k=1 to R

- 1. Let (x_k, y_k) be the kth record
- 2. Temporarily remove (x_k, y_k) from the dataset



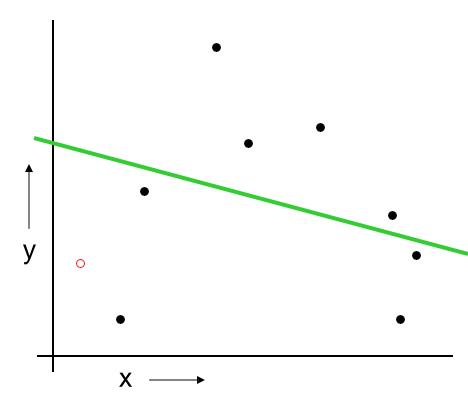
For k=1 to R

- 1. Let (x_k, y_k) be the kth record
- 2. Temporarily remove (x_k, y_k) from the dataset
- 3. Train on the remaining R-1 datapoints



For k=1 to R

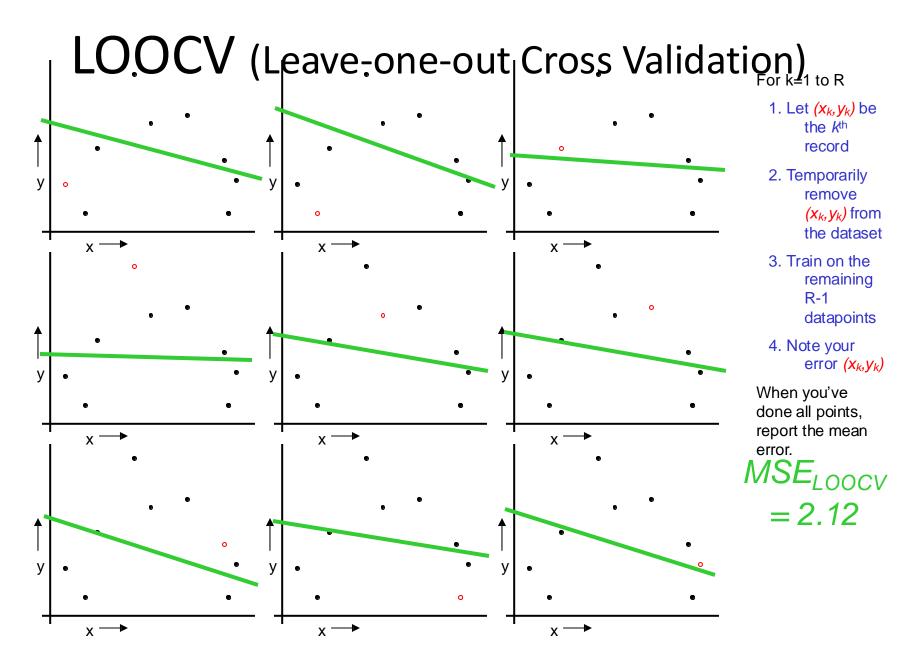
- 1. Let (x_k, y_k) be the kth record
- 2. Temporarily remove (x_k, y_k) from the dataset
- 3. Train on the remaining R-1 datapoints
- 4. Note your error (x_k, y_k)



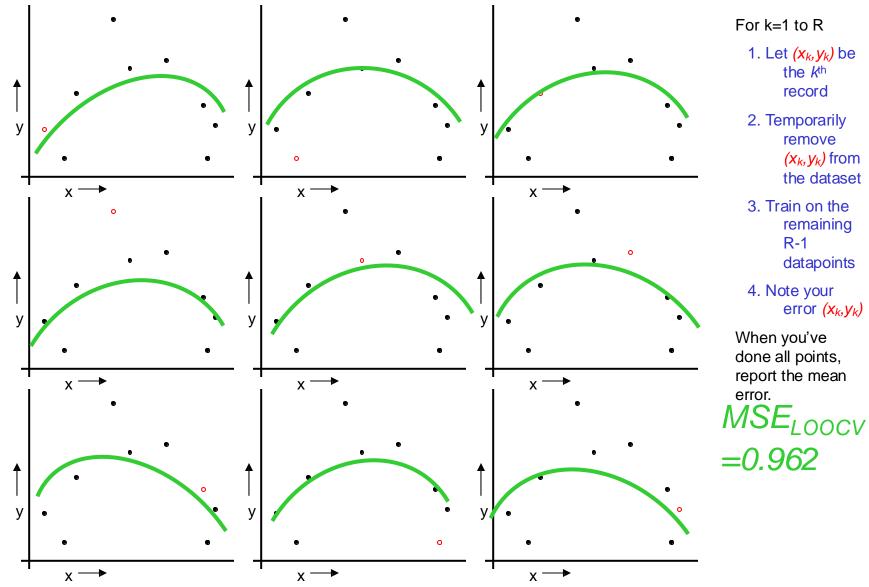
For k=1 to R

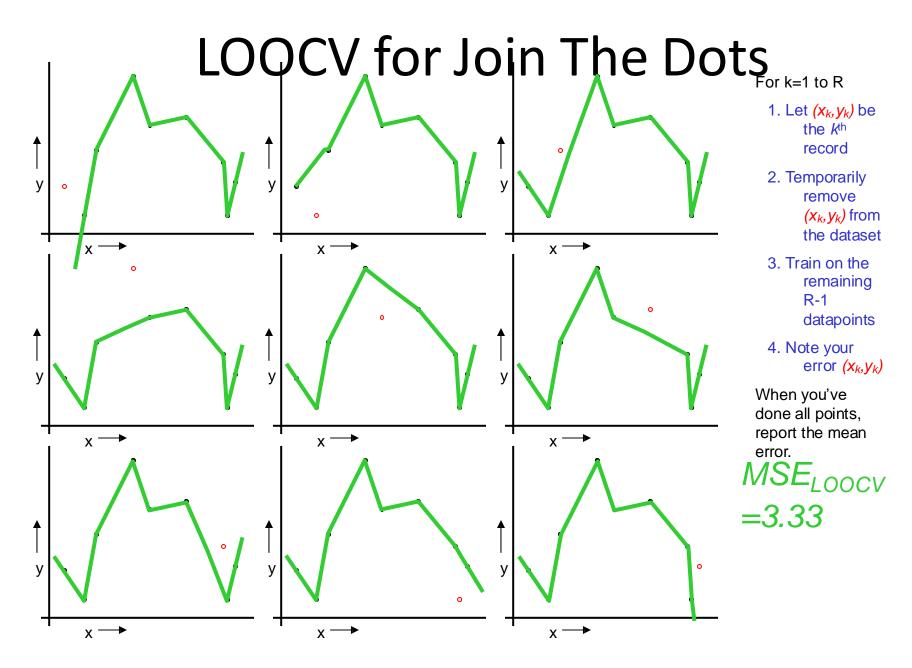
- 1. Let (x_k, y_k) be the kth record
- 2. Temporarily remove (x_k, y_k) from the dataset
- 3. Train on the remaining R-1 datapoints
- 4. Note your error (x_k, y_k)

When you've done all points, report the mean error.



LOOCV for Quadratic Regression



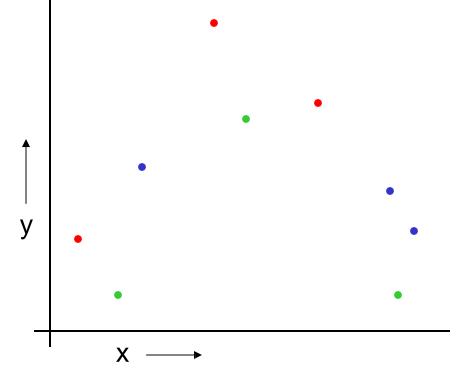


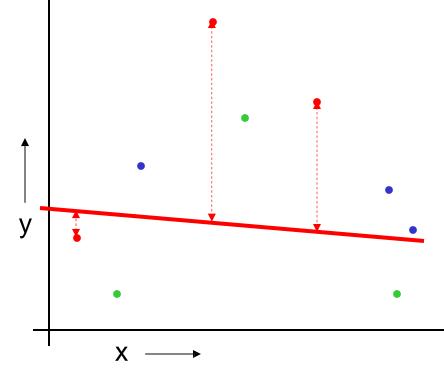
Which kind of Cross Validation?

	Downside	Upside
Test-set	Variance: unreliableCheapestimate of futureperformance	
Leave- one-out	Expensive. Has some weird behavior	Doesn't waste data

..can we get the best of both worlds?

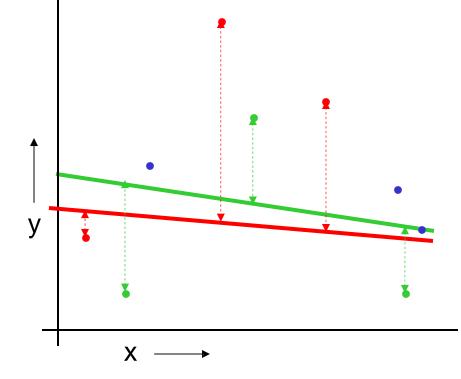
Randomly break the dataset into k partitions (in our example we'll have k=3 partitions colored Red Green and Blue)





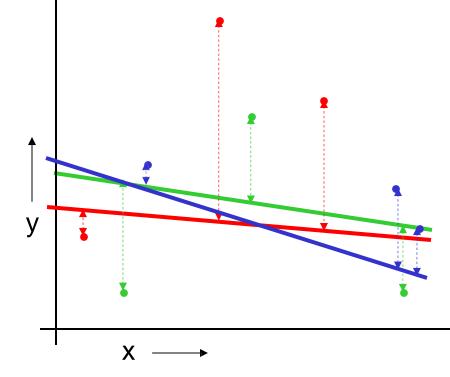
Randomly break the dataset into k partitions (in our example we'll have k=3 partitions colored Red Green and Blue)

For the red partition: Train on all the points not in the red partition. Find the test-set sum of errors on the red points.



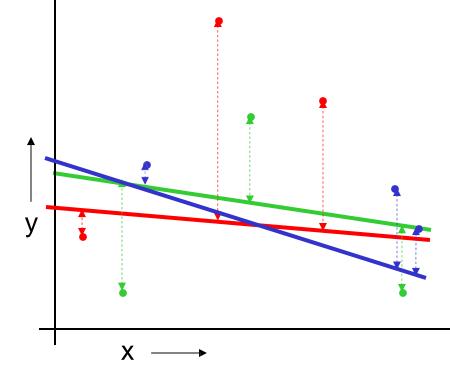
Randomly break the dataset into k partitions (in our example we'll have k=3 partitions colored Red Green and Blue)

- For the red partition: Train on all the points not in the red partition. Find the test-set sum of errors on the red points.
- For the green partition: Train on all the points not in the green partition. Find the test-set sum of errors on the green points.



Randomly break the dataset into k partitions (in our example we'll have k=3 partitions colored Red Green and Blue)

- For the red partition: Train on all the points not in the red partition. Find the test-set sum of errors on the red points.
- For the green partition: Train on all the points not in the green partition. Find the test-set sum of errors on the green points.
- For the blue partition: Train on all the points not in the blue partition. Find the test-set sum of errors on the blue points.

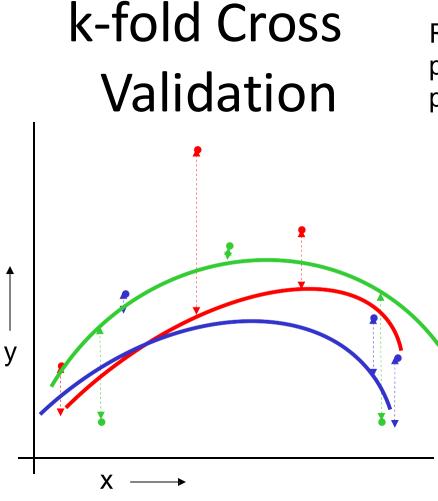


Linear Regression *MSE*_{3FOLD}=2.05

Randomly break the dataset into k partitions (in our example we'll have k=3 partitions colored Red Green and Blue)

- For the red partition: Train on all the points not in the red partition. Find the test-set sum of errors on the red points.
- For the green partition: Train on all the points not in the green partition. Find the test-set sum of errors on the green points.
- For the blue partition: Train on all the points not in the blue partition. Find the test-set sum of errors on the blue points.

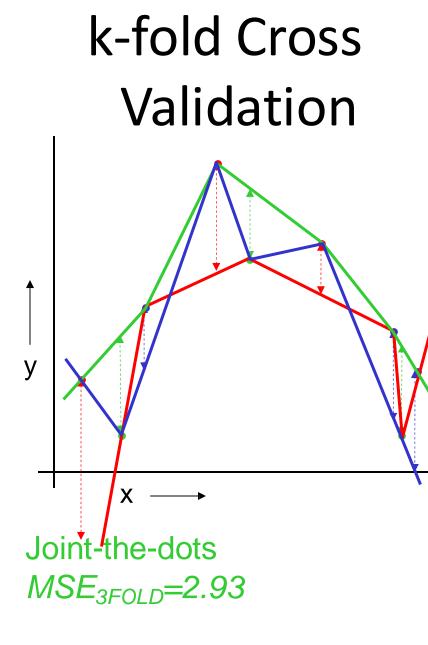
Then report the mean error



Quadratic Regression MSE_{3FOLD}=1.11 Randomly break the dataset into k partitions (in our example we'll have k=3 partitions colored Red Green and Blue)

- For the red partition: Train on all the points not in the red partition. Find the test-set sum of errors on the red points.
- For the green partition: Train on all the points not in the green partition. Find the test-set sum of errors on the green points.
- For the blue partition: Train on all the points not in the blue partition. Find the test-set sum of errors on the blue points.

Then report the mean error



Randomly break the dataset into k partitions (in our example we'll have k=3 partitions colored Red Green and Blue)

- For the red partition: Train on all the points not in the red partition. Find the test-set sum of errors on the red points.
- For the green partition: Train on all the points not in the green partition. Find the test-set sum of errors on the green points.
- For the blue partition: Train on all the points not in the blue partition. Find the test-set sum of errors on the blue points.

Then report the mean error

Which kind of Cross Validation?

	Downside	Upside
Test-set	Variance: unreliable estimate of future performance	Cheap
Leave- one-out	Expensive. Has some weird behavior	Doesn't waste data
10-fold	Wastes 10% of the data. 10 times more expensive than test set	Only wastes 10%. Only 10 times more expensive instead of R times.
3-fold	Wastier than 10-fold. Expensivier than test set	Slightly better than test- set
R-fold	Identical to Leave-one-out	

CV-based Model Selection

- Example: Choosing number of hidden units in a onehidden-layer neural net.
- Step 1: Compute 10-fold CV error for six different model classes:

Algorithm	TRAINERR	10-FOLD-CV-ERR	Choice
0 hidden units			
1 hidden units			
2 hidden units			\mathbf{X}
3 hidden units			
4 hidden units			
5 hidden units			

• Step 2: Whichever model class gave best CV score: train it with all the data, and that's the predictive model you'll use.

CV-based Model Selection

- Example: Choosing "k" for a k-nearest-neighbor regression.
- Step 1: Compute LOOCV error for six different model classes:

Algorithm	TRAINERR	10-fold-CV-ERR	Choice
K=1			
K=2			
K=3			
K=4			\boxtimes
K=5			
<i>K</i> =6			

• Step 2: Whichever model class gave best CV score: train it with all the data, and that's the predictive model you'll use.

CV-based Model Selection

- Can you think of other decisions we can ask Cross
 Validation to make for us, based on other machine learning algorithms in the class so far?
 - Degree of polynomial in polynomial regression
 - Whether to use full, diagonal or spherical Gaussians in a Gaussian Bayes Classifier.
 - The Kernel Width in Kernel Regression
 - The Kernel Width in Locally Weighted Regression
 - The Bayesian Prior in Bayesian Regression

These involve choosing the value of a real-valued parameter. What should we do?

Idea One: Consider a discrete set of values (often best to consider a set of values with exponentially increasing gaps, as in the K-NN example).

Idea Two: Compute $\frac{\partial \text{LOOCV}}{\partial \text{Parameter}}$ and then do gradianet descent.