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SUPPORT VECTOR MACHINES
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classify this data?
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Linear Classifiers
f x

α

yest

denotes +1
denotes -1

f(x,w,b) = sign(w. x - b)

Any of these would 
be fine..

..but which is best?



Classifier Margin
f x

α

yest

denotes +1
denotes -1

f(x,w,b) = sign(w. x - b)

Define the margin of 
a linear classifier as 
the width that the 
boundary could be 
increased by before 
hitting a datapoint.



Maximum Margin
f x

α

yest

denotes +1
denotes -1

f(x,w,b) = sign(w. x - b)

The maximum 
margin linear 
classifier is the 
linear classifier with 
the, um, maximum 
margin.
This is the simplest 
kind of SVM (Called 
an LSVM)
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Why Maximum Margin?

denotes +1
denotes -1

f(x,w,b) = sign(w. x - b)

The maximum 
margin linear 
classifier is the 
linear classifier with 
the, um, maximum 
margin.
This is the simplest 
kind of SVM (Called 
an LSVM)

Support Vectors are 
those datapoints 
that the margin 
pushes up against

1. Intuitively this feels safest. 
2. If we’ve made a small error in the 

location of the boundary (it’s been 
jolted in its perpendicular direction) 
this gives us least chance of causing a 
misclassification.

3. LOOCV is easy since the model is 
immune to removal of any non-
support-vector datapoints.

4. There’s some theory (using VC 
dimension) that is related to (but not 
the same as) the proposition that this 
is a good thing.

5. Empirically it works very very well.



Specifying a line and margin

• How do we represent this mathematically?
• …in m input dimensions?

Plus-Plane

Minus-Plane
Classifier Boundary



Specifying a line and margin

• Plus-plane   =    { x : w . x + b = +1 }
• Minus-plane =   { x : w . x + b = -1 }

Plus-Plane

Minus-Plane
Classifier Boundary

Classify as.. +1 if w . x + b >= 1
-1 if w . x + b <= -1
Universe 
explodes

if -1 < w . x + b < 1



Support vector machines
• Let {x1, ..., xn} be our data set and let yi ∈ {1,-1} be the class 

label of xi
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Large-margin Decision Boundary
• The decision boundary should be as far away 

from the data of both classes as possible
– We should maximize the margin, m
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Finding the Decision Boundary
• The decision boundary should classify all points correctly ⇒

• The decision boundary can be found by solving the 
following constrained optimization problem

• This is a constrained optimization problem. Solving it 
requires to use Lagrange multipliers
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KKT Conditions

• Problem:
min
𝑥𝑥
𝑓𝑓(𝑥𝑥) sub. to: gi x ≤ 0 ∀ 𝑖𝑖

• Lagrangian: 𝐿𝐿 𝑥𝑥, 𝜇𝜇 = 𝑓𝑓 𝑥𝑥 + ∑𝑖𝑖 𝜇𝜇𝑖𝑖𝑔𝑔𝑖𝑖(𝑥𝑥)
• Conditions:

– Stationarity: 𝛻𝛻xL x,𝜇𝜇 = 0.
– Primal feasibility: 𝑔𝑔𝑖𝑖 𝑥𝑥 ≤ 0 ∀ 𝑖𝑖.
– Dual feasibility: 𝜇𝜇𝑖𝑖 ≥ 0.
– Complementary slackness: 𝜇𝜇𝑖𝑖𝑔𝑔𝑖𝑖 𝑥𝑥 = 0.



• The Lagrangian is

– αi≥0
– Note that ||w||2 = wTw
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Finding the Decision Boundary



• Setting the gradient of  L w.r.t. w and b to 
zero, we have
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The Dual Problem



The Dual Problem

• If we substitute                             to     , we have 

Since 

• This is a function of αi only
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The Dual Problem
• The new objective function is in terms of αi only
• It is known as the dual problem: if we know w, we know all αi; if we know 

all αi, we know w
• The original problem is known as the primal problem
• The objective function of the dual problem needs to be maximized (comes 

out from the KKT theory)
• The dual problem is therefore:
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Properties of αi when we introduce 
the Lagrange multipliers

The result when we differentiate the 
original Lagrangian w.r.t. b



The Dual Problem

• This is a quadratic programming (QP) problem
– A global maximum of αi can always be found

• w can be recovered by
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Characteristics of the Solution
• Many of the αi are zero

– Complementary slackness: 𝛼𝛼𝑖𝑖 1 − 𝑦𝑦𝑖𝑖 𝑤𝑤𝑇𝑇𝑥𝑥𝑖𝑖 + 𝑏𝑏 = 0
– Sparse representation: w is a linear combination of a 

small number of data points

• xi with non-zero αi are called support vectors (SV)

– The decision boundary is determined only by the SV
– Let tj (j=1, ..., s) be the indices of the s support vectors. 

We can write
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A Geometrical Interpretation

24

α6=1.4

Class 1

Class 2

α1=0.8
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Characteristics of the Solution
• For testing with a new data z

– Compute                                                      and 
classify z as class 1 if the sum is positive, and 
class 2 otherwise

– Note: w need not be formed explicitly
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Non-linearly Separable Problems
• We allow “error” ξi in classification; it is based on the output 

of the discriminant function wTx + b
• ξi approximates the number of misclassified samples
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Class 1

Class 2



Soft Margin Hyperplane
• The new conditions become

– ξi are “slack variables” in optimization
– Note that ξi=0 if there is no error for xi
– ξi is an upper bound of the number of errors

• We want to minimize

• C : tradeoff parameter between error and margin
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The Optimization Problem
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The Dual Problem
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The Optimization Problem
• The dual of this new constrained optimization problem is

• New constraints derived from                            since μ and α are 
positive.

• w is recovered as

• This is very similar to the optimization problem in the linear 
separable case, except that there is an upper bound C on αi now

• Once again, a QP solver can be used to find αi
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• The algorithm try to keep ξ low, maximizing the 
margin

• The algorithm does not minimize the number of 
error. Instead, it minimizes the sum of distances from 
the hyperplane.

• When C increases the number of errors tend to 
lower. At the limit of C tending to infinite, the 
solution tend to that given by the hard margin 
formulation, with 0 errors
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Soft margin is more robust to outliers
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Extension to Non-linear Decision 
Boundary

• So far, we have only considered large-margin classifier with 
a linear decision boundary

• How to generalize it to become nonlinear?
• Key idea: transform xi to a higher dimensional space to 

“make life easier”
– Input space: the space the point xi are located
– Feature space: the space of φ(xi) after transformation

• Why transform?
– Linear operation in the feature space is equivalent to non-linear 

operation in input space
– Classification can become easier with a proper transformation. 

In the XOR problem, for example, adding a new feature of x1x2
make the problem linearly separable
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a linear decision boundary

• How to generalize it to become nonlinear?
• Key idea: transform xi to a higher dimensional space to 

“make life easier”
– Input space: the space the point xi are located
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XOR
X Y
0 0 0
0 1 1
1 0 1
1 1 0
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Is not linearly separable

X Y XY
0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

Is linearly separable



Find a feature space
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Transforming the Data 

• Computation in the feature space can be costly 
because it is high dimensional
– The feature space is typically infinite-dimensional!

• The kernel trick comes to rescue
37
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than the input space in practice



The Kernel Trick
• Recall the SVM optimization problem

• The data points only appear as inner product
• As long as we can calculate the inner product in the 

feature space, we do not need the mapping explicitly
• Many common geometric operations (angles, 

distances) can be expressed by inner products
• Define the kernel function K by
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An Example for φ(.) and K(.,.)
• Suppose φ(.) is given as follows

• An inner product in the feature space is

• So, if we define the kernel function as follows, there is no 
need to carry out φ(.) explicitly

• This use of kernel function to avoid carrying out φ(.) 
explicitly is known as the kernel trick
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Kernels

• Given a mapping:
a kernel is represented as the inner product

A kernel must satisfy the Mercer’s condition:
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Modification Due to Kernel Function

• Change all inner products to kernel functions
• For training,

41

Original

With kernel 
function



Modification Due to Kernel Function
• For testing, the new data z is classified as class 

1 if f ≥ 0, and as class 2 if f <0

42

Original

With kernel 
function



More on Kernel Functions
• Since the training of SVM only requires the value of 

K(xi, xj), there is no restriction of the form of xi and xj
– xi can be a sequence or a tree, instead of a feature vector

• K(xi, xj) is just a similarity measure comparing xi and 
xj

• For a test object z, the discriminant function 
essentially is a weighted sum of the similarity 
between z and a pre-selected set of objects (the 
support vectors)

43



Kernel Functions

• In practical use of SVM, the user specifies the kernel 
function; the transformation φ(.) is not explicitly stated

• Given a kernel function K(xi, xj), the transformation φ(.) 
is given by its eigenfunctions (a concept in functional 
analysis)
– Eigenfunctions can be difficult to construct explicitly
– This is why people only specify the kernel function without 

worrying about the exact transformation
• Another view: kernel function, being an inner product, 

is really a similarity measure between the objects 
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A kernel is associated to a 
transformation

– Given a kernel, in principle it should be recovered the 
transformation in the feature space that originates it.

– K(x,y) = (xy+1)2= x2y2+2xy+1

It corresponds the transformation

1/28/2025 45
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Examples of Kernel Functions
• Polynomial kernel of degree d

• Polynomial kernel up to degree d

• Radial basis function kernel with width σ

– The feature space is infinite-dimensional
• Sigmoid with parameter κ and θ

– It does not satisfy the Mercer condition on all κ and θ
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Building new kernels
• If k1(x,y) and k2(x,y) are two valid kernels then the 

following kernels are valid
– Linear Combination

– Exponential

– Product

– Polynomial transformation (Q: polynomial with non 
negative coeffcients)

– Function product (f: any function)
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Polynomial kernel

Ben-Hur et al, PLOS computational Biology 4 (2008)
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Gaussian RBF kernel

Ben-Hur et al, PLOS computational Biology 4 (2008)
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