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REGRESSION




Linear Basis Function Models (1)

Example: Polynomial Curve Fitting

0 1
M
- , 2 M _ o
y(z, W) = wo + w1z + wex” + ... +wyx™ = E w;x
Jj=0




Linear Basis Function Models (2)

Generally
M—1
y(x,w) = Y wig;(x) =w ¢(x)
j=0

where Aj(x) are known as basis functions.
Typically, AO(X) = 1, so that w, acts as a bias.

In the simplest case, we use linear basis
functions : Ay(X) = Xg.




Linear Basis Function Models (3)

Polynomial basis functions:

oi(x) = 2.

These are global; a small
change in X affect all basis

functions.




Linear Basis Function Models (4)

Gaussian basis functions:

?5(x) = eXp{—(x — #j)g}

252

These are local; a small change
in X only affect nearby basis
functions. * ; and s control
location and scale (width).
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Linear Basis Function Models (5)

Sigmoidal basis functions:

¢j(x) =0 (x Suj)

1t exp(—a)

Also these are local; a small
change in X only affect nearby
basis functions. ! j and S
control location and scale
(slope).
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Least Squares Estimation

A a polynomial curve is represented by the

parameters w. &
flx) = x — x? |
flx) =x+ x°

Error (loss) function for a given parameter:
Z {U Ln T fr;}

Estimate w* = min,, E(w)




Maximum Likelihood and Least Squares (1)

Assume observations from a deterministic function
with added Gaussian noise:

t=y(x,w)+€e  where p(e|B) = N (€0, ﬁ_l)
which is the same as saying,
p(tlx, w, B) = N(tly(x,w), 7).

Given observed inputs, X = {x1,...,xy}, and targets,
t=[t1,...,tn]", we obtain the likelihood function

p(t| X, w, () = HN wWho(x,), 7).




Maximum Likelihood and Least Squares (2)

Taking the logarithm, we get

Inp(tlw,3) = ZIHN(tn‘WTCb(Xn)w@_I)

— %lnﬁ — %ln(%r) — BEp(w)

where

is the sum-of-squares error.




Maximum Likelihood and Least Squares (3)

Computing the gradient and setting it to zero yields

Vwlnp(tlw,3) =8> {tn —w d(xs)} ¢(x,)" = 0.

SOlVing for W, we get | The Moore-Penrose

|
pseudo-inverse, &

—1
WML = (‘I)T‘I)) ‘I)Tt

where
( do(x1)  d1(x1) -+ dm-i(xa) )
¢0(X2) 1 (Xz) e OM—1 (Xg)

\%(;CN) Cbl(;(N) ¢J\/f—1.(XN))




Geometry of Least Squares

Consider
y =®wwmL = @1, o p] WL

yeSCT teT

/L /EN-dimensionaI

M -dimensional

Sisspanned by ¢,..., ¢,

Wy minimizes the distance
between t and its orthogonal
projectionon S, i.e. .




Normal Equations

(ATA)3 =ATY
pxp pxl p x1

If (ATA) is invertible,

8= (ATA) TATY

flx)=xp

When is (ATA) invertible ?
Recall: Full rank matrices are invertible.

What if (ATA) is not invertible ?




Gradient Descent

Even when (ATA) is invertible, might be computationally expensive if A is huge.

~~

B = arg mﬁin l(Aﬁ -Y)'(AB-Y) =arg mﬁin J(8)
n

Treat as optimization problem

Observation: J(B) is convexin B. How to find the minimizer?

25

J(By) J(By, Ba)”

B,




Gradient Descent

Even when (ATA) is invertible, might be computationally expensive if A is huge.

B = arg min LAB-Y)T(AB-Y) = arg mﬁin J(5)
n

Since J(B) is convex, move along negative of gradient

Initialize: 30 step size
15)
Update: pgitl — gt _ &
pdate: g3 3 > 55 t
= gl—a AT(AB - Y)
\_'_l
0if 3= gt

Stop: when some criterion met e.g. fixed # iterations, or

,80
A=yl
91D

6t




Effect of step--size O

J(B) J(B)

Large a => Fast convergence but larger residual error
Also possible oscillations

Small a => Slow convergence but small residual error




Oth Order
Polynomial

n=10



1stOrder
Polynomial

Slide courtesy of William Cohen



3rd Order

Polynomial

Slide courtesy of William Cohen



Oth Order
Polynomial

Slide courtesy of William Cohen



Over-fitting

1 : .
—©— Training
—O— Test
op!
2 0.5
&
0

Root-Mean-Square (RMS) Error

Slide courtesy of William Cohen



Polynomial Coefficients

M=0 M=1 M=3 M =09
wg | 019 082  0.31 0.35
wk 127 7.99 232.37
W -95.43 -5321.83
Wk 17.37 48568.31
wX -231639.30
w? 640042.26
Wi -1061800.52
wk 1042400.18
w? -557682.99
Wi 125201.43

Slide courtesy of William Cohen



Regularization

Penalize large coefficient values

JX,,,(w)——E quﬁ (x)

+ 5 [|wl|”

Slide courtesy of William Cohen



Regularization:

InA = —18

Slide courtesy of William Cohen



Over Regularization

b o a
A Y,
N\
% r 4
Y v,
LY ¥
%

Slide courtesy of William Cohen



Regularization

9th Order Polynomial

1

Erus
—
n

Training
Test
-35 =30 —25 =20



Regularized Least Squares (1)

Consider the error function:
ED(W) -+ )\Ew(W)

Data term + Regularization term

With the sum-of-squares error function and a
quadratic regularizer, we get

1 A
T 2 T
5;{%—\?\! o (x,)} —|—§w W

, is called the
regularization

which is minimized by coefficient

1
W — ()\I n @ch) 3Tt




Regularized Least Squares (2)

With a more general regularizer, we have

—Z{t — W (xa)} + Zl%lq

q=0.5 q=1 q=2

Lasso Quadratic




Regularized Least Squares (3)

Lasso tends to generate sparser solutions than a
guadratic
regularizer.

w2 a w2 a

(
p
<




CLASSIFICATION




Discrete and Continuous Labels

Classification

Sports = Anemic cell
> Science | 0 Healthy cell

News *Q

X = Document Y = Topic X = Cell Image Y = Diagnosis

Regression

OJ INDU AYERAGE ¢OOW JOMWES & CO
az of 22-Jan-2010
11000 !

10800 -

Stock Market

Prediction 10000 Y=?

500

1 1 1 1
- Now1l Decil Deczl Janoa X =Feb01
Copyright 2010 Yahoo! Inc. Prew Clz: ---- http://Finance .yahoo ..com




An example application

An emergency room in a hospital measures 17
variables (e.g., blood pressure, age, etc) of newly
admitted patients.

A decision is needed: whether to put a new patient in
an intensive-care unit.

Due to the high cost of ICU, those patients who may
survive less than a month are given higher priority.

Problem: to predict high-risk patients and discriminate
them from low-risk patients.




Another application

A credit card company receives thousands of
applications for new cards. Each application
contains information about an applicant,

age

Marital status
annual salary
outstanding debts
credit rating

etc.

Problem: to decide whether an application should
approved, or to classify applications into two
categories, approved and not approved.




The data and the goal

Data: A set of data records (also called
examples, instances or cases) described
by

kK attributes: A, A,, ... A..

a class: Each example is labelled with a pre-
defined class.

Goal: To learn a classification model from
the data that can be used to predict the
classes of new (future, or test)
cases/instances.




Supervised learning process: two steps

= Learning (training): Learn a model using the
training data

= Testing: Test the model using unseen test data

to assess the model accuracy

Number of correct classifications
Accuracy =

- learming

[Taiming T
f algorithm
data

M

Total number of test cases

Step |: Traming Step 2: Testing




Least squares classification

Binary classification.

Each class is described by it’s own linear model:
y(x) = wlx + wy

Compactly written as:
y(x) = W'x

W is [w wy].

Ey(w) =1/, xw — )T (Xw — ¢)
nt" row of X is x,,, the nt" datapoint.
tis vector of +1, -1.




Least squares classification

Least squares W is:
-1
w=(X"X) X"t
Problem is affected by outliers.




Least squares classification




From Linear to Logistic Regression

Assumes the following functional form for P(Y | X):

1
Py =1|X) =
( X) 1+ exp(wo + D>, w; X;)

Logistic function applied to a linear
function of the data

Logistic function
(or Sigmoid):

logit (z)

1+ exp(—=2)

=5
Features can be discrete or continuous!

Nxo




Logistic Regression is a Linear Classifier!

Assumes the following functional form for P(Y | X):

1
1+ exp(wo + D, w; X;)

PY =1|X) =

|

Decision boundary: - S A
P(Y =0|X) = P(Y = 1|X) T / .

0
g 1

~ AVo

(Linear Decision Boundary)




Logistic Regression is a Linear Classifier!

Assumes the following functional form for P(Y | X):

1

PlY =1|X) =
( X) 1 + exp(wo + >, w; X;)

exp(wo + >, w; X;)

= P(Y =0|X) =
=01 = I exp(uwo + 5, wi Xo)

= AVe | rAVe




Logistic Regression

Label t € {+1, —1}modeled as:
P(t =1lx,w) = c(wlx)
P(ylx,w) =ac(yw'x),y € {+1,—1}
Given a set of parameters w, the probability or
likelihood of a datapoint (x,t):
P(t|x,w) = a(tw’x)




Logistic Regression

Given a training dataset {(x{,ty), ..., (xn, tn)}
log likelihood of a model w is given by:

Lw) = ) In(P(ty |y, w))

Using principle of maximum likelihood, the
best w is given by:

w*=argmax  L(w)




Logistic Regression

Final Problem:

—log(1 + exp(—t,,w'x,))

NgE

max
w
=1

Or, minY"™ . log(1+ exp(—t,wlxy,))
w

Error function:
n
E(w) = Z log(1 + exp(—t,w'x,))
i=1

E(w) is convex.




Logistic Regression

Final Problem:
n

maxz —log(1 + exp(—t,w'x,))

w
=1

Regularized Version:
n

maxz —log(1 + exp(—t,wlx,)) — Awlw
i=1

Or, min ), ;- , log(1 + exp(—t,wlx,)) + A| lw| |2
w




Properties of Error function

Derivatives:
n
VE(w) = Z (1= at;wx))(t;ix;)
i=1
n
V2E(w) = Y o(twTx)(1 — a(twTx))ax”
=1




Gradient Descent

Problem: min f(x) e

f(x): differentiable / e

g(x): gradient of f(x) / /ﬁ \

Negative gradient is m A\
steepest descent ( G\ | ) )
direction. o\ j

At each step movein || |\
the gradient directic \

so that there is
“sufficient decrease




Gradient Descent

input : Function f, Gradient V f
output: Optimal solution w*

Initialize wg <+ 0, £ < 0

while |V fi| > e do

Compute oy, < linesearch(f, —V fi, wg)
Set Wet1 < W — Odefk

Evaluate V fr1+1

k+—k+1
end

w* — wy




Logistic Regression for more than 2 classes

e Logistic regression in more general case, where
Y {yyenYid

for k<K d
exp(wgo + 291 Wi X;)

1+ Zfz_ll exp(w;o + Zle w;; X;)

P(Y =y X) =

for k=K (normalization, so no weights for this class)

1
1+ ngll exp(wjo + S q wj; X;)

P(Y = yg|X) =




Multiple classes

One-vs-all: K — 1 hyperplanes each separating
Cy, ..., Cx_q classes from rest.

Otherwise Cg

Low number of
classifiers.




Multiple classes

One-vs-one: Every pair C; — C; get a boundary.
Final by majority vote.

High number of
classifiers.




Multiple Classes




Multiple classes

K-linear discriminant functions:

Vie(X) = Wi X + Wy
Assign x to Cy if y(x) = y;(x) forall j # k
Decision boundary:

(Wk — Wj)Tx + (Wko — Wjo) =0

Decision region is singly connected:

x =Axs + (1 — Axg
If x, and xz have same label, so does x.




MORE REGRESSION




The Bias-Variance Decomposition (1)

Recall the expected squared loss,

/{y %)} p(x dx+//{h —t}p t) dx dt

where 4t
h(x) = Eft]x] = / tp(t]x) dt. -

The second term of HL] corresponds to the noise
inherent in the random variable t.

What about the first term?




The Bias-Variance Decomposition (2)

Suppose we were given multiple data sets, each of
size N. Any particular data set, D, will give a
particular function y(X ;D). We then have

{y(x; D) — h(x)}”
= {y(x;D) — Eply(x; D)] + Eply(x; D)] — h(x)}?
= {y(x;D) — Eply(x; D)]}* + {Ep[y(x; D)] — h(

)}
+2{y(x; D) = Eply(x; D)1 Ep|y(x; D)] — h(x)}-

X




The Bias-Variance Decomposition (3)

Taking the expectation over D vyields

Ep [{y(x; D) — h(x)}?]
= {Epnly(xD)] — h(x)}” +Ep [{y(x D) —~Eply(x; D)1} .

vy

"

(bias) 2 variance




The Bias-Variance Decomposition (4)

Thus we can write

expected loss = (bias)? + variance + noise

where
tins)® = [ {Eoly(xiD)] - hx)}p(x) dx
variance = /IED {y(x; D) — Ep[y(x; D)]}?] p(x) dx

noise = /{h(X)—t}Qp(X,t)dth




The Bias-Variance Decomposition (5)

Example: 25 data sets from the sinusoidal, varying
the degree of regularization, | .

InA =26




The Bias-Variance Decomposition (6)

Example: 25 data sets from the sinusoidal, varying
the degree of regularization, | .

In A = —-0.31

Ty




The Bias-Variance Decomposition (7)

Example: 25 data sets from the sinusoidal, varying
the degree of regularization, | .




The Bias-Variance Trade-off

From these plots, we note  0.15
that an over-regularized o.12}
model (large , ) will have a
high bias, while an under-
regularized model (small ) 0.06¢
will have a high variance.

(bias)*
varlance

(blas) - varlance
test error

0.09 t

0.03

W

In A




Bayesian Linear Regression (1)

Define a conjugate prior over W
p(w) = N(w|mo, So).

Combining this with the likelihood function and using
results for marginal and conditional Gaussian
distributions, gives the posterior

p(wt) = N(w|mpy,Sy)
where
my = SN (Salmo+,@(I)Tt)
Sy = S;l+pe'e.




Bayesian Linear Regression (2)

A common choice for the prior is
p(w) = N (w0, ')

for which
my = BSN(I)Tt
Sy = al+ (8.

Next we consider an example ...




Bayesian Linear Regression (3)

0 data points observed

Prior Data Space




Bayesian Linear Regression (4)

1 data point observed

Likelihood Posterior Data Space




Bayesian Linear Regression (5)

2 data points observed

Likelihood Posterior Data Space




Bayesian Linear Regression (6)

20 data points observed

Likelihood Posterior Data Space




Predictive Distribution (1)

Predict t for new values of X by integrating
over W:

/ p(tlw, B)p(wlt, a, B) dw
N (timE b (x), 02 (x))

p(tlt, o, B)

where

0% (x) = = + p(x) 'Sy d(x).




Predictive Distribution (2)

Example: Sinusoidal data, 9 Gaussian basis functions,
1 data point

B
I TR

o
(0]
o




Predictive Distribution (3)

Example: Sinusoidal data, 9 Gaussian basis functions,
2 data points




Predictive Distribution (4)

Example: Sinusoidal data, 9 Gaussian basis functions,
4 data points




Predictive Distribution (5)

Example: Sinusoidal data, 9 Gaussian basis functions,
25 data points




Multiple Outputs (1)

Analogously to the single output case we have:

p(tlx, W,5) = N(t|y(W,x),57'I)
= N{tW o(x),571).

Given observed inputs, X = {x1,...,xn}, and targets,
T = [t1,...,tx]T, we obtain the log likelihood function

N
np(TIX,W,5) = Y InN(t,[W'¢(xy),37'T)
n=1

NK. /B8 B« >




Multiple Outputs (2)

Maximizing with respect to W, we obtain
W, = (‘I)T(I)) - o
If we consider a single target variable, t,, we see that
Wi = (@Tq))_l 3Ty, = o',

where t, = [ti,...,tnk], Which is identical with the
single output case.
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