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REGRESSION



Linear Basis Function Models (1)

Example: Polynomial Curve Fitting



Linear Basis Function Models (2)

Generally

where Áj(x) are known as basis functions.
Typically, Á0(x) =  1, so that w0 acts as a bias.
In the simplest case, we use linear basis 

functions : Ád(x) =  xd.



Linear Basis Function Models (3)

Polynomial basis functions:

These are global; a small 
change in x affect all basis 
functions.



Linear Basis Function Models (4)

Gaussian basis functions:

These are local; a small change 
in x only affect nearby basis 
functions. ¹ j and s control 
location and scale (width).



Linear Basis Function Models (5)

Sigmoidal basis functions:

where

Also these are local; a small 
change in x only affect nearby 
basis functions. ¹ j and s
control location and scale 
(slope).



Least Squares Estimation



Maximum Likelihood and Least Squares (1)

Assume observations from a deterministic function 
with added Gaussian noise:

which is the same as saying,

Given observed inputs,                            , and targets,
, we obtain the likelihood function  

where



Maximum Likelihood and Least Squares (2)

Taking the logarithm, we get

where

is the sum-of-squares error.



Computing the gradient and setting it to zero yields

Solving for w , we get 

where

Maximum Likelihood and Least Squares (3)

The Moore-Penrose 
pseudo-inverse,       .



Geometry of Least Squares

Consider

S is spanned by                    .
wML minimizes the distance 
between t and its orthogonal 
projection on S, i.e. y.

N-dimensional
M -dimensional



Normal Equations

If is invertible,

When is invertible ?
Recall: Full rank matrices are invertible.

What if is not invertible ?  

p xp p x1 p x1



Gradient Descent

1
4

Even when is invertible, might be computationally expensive if A is huge.

Treat as optimization problem

Observation: J(β) is convex in β.

J(β1)

β1
β1 β2

How to find the minimizer?

J(β1, β2)



Gradient Descent

Even when is invertible, might be computationally expensive if A is huge.

Initialize:

Update:

0 if =

Stop: when some criterion met e.g. fixed # iterations, or < ε.

Since J(β) is convex, move along negative of gradient

step size



Effect of step-‐size α

Large α => Fast convergence but larger residual error  
Also possible oscillations

Small α => Slow convergence but small residual error



0th Order
Polynomial

n=10



1st Order
Polynomial

Slide courtesy of William Cohen



3rd Order
Polynomial

Slide courtesy of William Cohen



9th Order
Polynomial

Slide courtesy of William Cohen



Over-fitting

Root-Mean-Square (RMS) Error

Slide courtesy of William Cohen



Polynomial Coefficients

Slide courtesy of William Cohen



Regularization

Penalize large coefficient values

Slide courtesy of William Cohen



Regularization:

Slide courtesy of William Cohen



Over Regularization

Slide courtesy of William Cohen



Regularization



Regularized Least Squares (1)

Consider the error function:

With the sum-of-squares error function and a 
quadratic regularizer, we get  

which is minimized by

Data term + Regularization term

¸ is called the 
regularization 
coefficient.



Regularized Least Squares (2)

With a more general regularizer, we have

Lasso Quadratic



Regularized Least Squares (3)

Lasso tends to generate sparser solutions than a 
quadratic 
regularizer. 



CLASSIFICATION



Discrete and Continuous Labels

Sports  
Science  
News

Classification

Regression

Anemic cell  
Healthy cell

Stock Market  
Prediction Y = ?

X = Feb01

X = Document Y = Topic X = Cell Image Y = Diagnosis



An example application

An emergency room in a hospital measures 17 
variables (e.g., blood pressure, age, etc) of newly 
admitted patients. 

A decision is needed: whether to put a new patient in 
an intensive-care unit. 

Due to the high cost of ICU, those patients who may 
survive less than a month are given higher priority. 

Problem: to predict high-risk patients and discriminate 
them from low-risk patients. 



Another application
A credit card company receives thousands of 

applications for new cards. Each application 
contains information about an applicant, 
age 
Marital status
annual salary
outstanding debts
credit rating
etc. 

Problem: to decide whether an application should 
approved, or to classify applications into two 
categories, approved and not approved. 



Data: A set of data records (also called 
examples, instances or cases) described 
by
k attributes: A1, A2, … Ak. 
a class: Each example is labelled with a pre-

defined class. 
Goal: To learn a classification model from 

the data that can be used to predict the 
classes of new (future, or test) 
cases/instances.

The data and the goal



Supervised learning process: two steps
 Learning (training): Learn a model using the 

training data
 Testing: Test the model using unseen test data

to assess the model accuracy

,
cases test ofnumber  Total

tionsclassificacorrect  ofNumber 
=Accuracy



Least squares classification



Least squares classification



Least squares classification



From Linear to Logistic Regression

Assumes the following functional form for P(Y|X):

Logistic function applied to a linear  
function of the data

Logistic  function
(or Sigmoid):

z

lo
gi

t(
z)

Features can be discrete or continuous!



Logistic Regression is a Linear  Classifier!

Assumes the following functional form for P(Y|X):

Decision boundary:

1

1

(Linear Decision Boundary)



Logistic Regression is a Linear  Classifier!

Assumes the following functional form for P(Y|X):

1

1          



Logistic Regression



Logistic Regression



Logistic Regression



Logistic Regression



Properties of Error function



Gradient Descent

Problem: min f(x)
f(x): differentiable
g(x): gradient of f(x)
Negative gradient is

steepest descent
direction. 

At each step move in
the gradient direction
so that there is 
“sufficient decrease”.



Gradient Descent



Logistic Regression for more than 2  classes

• Logistic regression in more general case, where
Y {y1,…,yK}

for k<K

for k=K (normalization, so no weights for this class)



Multiple classes



Multiple classes



Multiple Classes



Multiple classes



MORE REGRESSION



The Bias-Variance Decomposition (1)

Recall the expected squared loss,

where

The second term of E[L] corresponds to the noise 
inherent in the random variable t.

What about the first term?



The Bias-Variance Decomposition (2)

Suppose we were given multiple data sets, each of 
size N. Any particular data set, D, will give a 
particular function y(x;D). We then have



The Bias-Variance Decomposition (3)

Taking the expectation over D yields



The Bias-Variance Decomposition (4)

Thus we can write

where 



The Bias-Variance Decomposition (5)

Example: 25 data sets from the sinusoidal, varying 
the degree of regularization, ¸ .



The Bias-Variance Decomposition (6)

Example: 25 data sets from the sinusoidal, varying 
the degree of regularization, ¸ .



The Bias-Variance Decomposition (7)

Example: 25 data sets from the sinusoidal, varying 
the degree of regularization, ¸ .



The Bias-Variance Trade-off

From these plots, we note 
that an over-regularized 
model (large ¸ ) will have a 
high  bias, while an under-
regularized model (small ¸ ) 
will have a high variance.



Bayesian Linear Regression (1)

Define a conjugate prior over w

Combining this with the likelihood function and using  
results for marginal and conditional Gaussian 
distributions, gives the posterior 

where 



Bayesian Linear Regression (2)

A common choice for the prior is 

for which

Next we consider an example …



Bayesian Linear Regression (3)

0 data points observed

Prior Data Space



Bayesian Linear Regression (4)

1 data point observed

Likelihood Posterior Data Space



Bayesian Linear Regression (5)

2 data points observed

Likelihood Posterior Data Space



Bayesian Linear Regression (6)

20 data points observed

Likelihood Posterior Data Space



Predictive Distribution (1)

Predict t for new values of x by integrating 
over w :

where



Predictive Distribution (2)

Example: Sinusoidal data, 9 Gaussian basis functions, 
1 data point



Predictive Distribution (3)

Example: Sinusoidal data, 9 Gaussian basis functions, 
2 data points



Predictive Distribution (4)

Example: Sinusoidal data, 9 Gaussian basis functions, 
4 data points



Predictive Distribution (5)

Example: Sinusoidal data, 9 Gaussian basis functions, 
25 data points



Multiple Outputs (1)

Analogously to the single output case we have:

Given observed inputs,                            , and targets,
, we obtain the log likelihood function



Multiple Outputs (2)

Maximizing with respect to W , we obtain

If we consider a single target variable, tk, we see that

where                               , which is identical with the 
single output case.
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