
CS60020: Foundations of
Algorithm Design and Machine

Learning
Sourangshu Bhattacharya

Why study algorithms and
performance?

• Algorithms help us to understand scalability.
• Performance often draws the line between what

is feasible and what is impossible.
• Algorithmic mathematics provides a language

for talking about program behavior.
• Performance is the currency of computing.
• The lessons of program performance generalize

to other computing resources.
• Speed is fun!

Searching

• Given a list of numbers: L = {1,4,5,…}
– L can be implemented as linked list or array.

• Given another number: x
• Return whether x is present in L
– Variant return the any / first instance of x in L

• Linear Search:
– For each element y in L: if x==y return y
– Return null

L1.19

Running time

• The running time depends on the input:
• if x appears early in L, running time is

low.
• Parameterize the running time by the size of

the input, say length of L.
• Generally, we seek upper bounds on the

running time, because everybody likes a
guarantee.

L1.20

Kinds of analyses
Worst-case: (usually)

• T(n) = maximum time of algorithm
on any input of size n.

Average-case: (sometimes)
• T(n) = expected time of algorithm

over all inputs of size n.
• Need assumption of statistical

distribution of inputs.
Best-case: (bogus)

• Cheat with a slow algorithm that
works fast on some input.

Machine-independent time

What is linear search’s worst-case time?
• It depends on the speed of our computer:

• relative speed (on the same machine),
• absolute speed (on different machines).

BIG IDEA:
• Ignore machine-dependent constants.
• Look at growth of T(n) as n → ∞ .

“Asymptotic Analysis”

L1.22

Q-notation
Math:
Q(g(n)) = { f (n) : there exist positive constants c1, c2, and

n0 such that 0 £ c1 g(n) £ f (n) £ c2 g(n)
for all n ³ n0}

Engineering:
• Drop low-order terms; ignore leading constants.
• Example: 3n3 + 90n2 – 5n + 6046 =Q(n3)

•Big-O notation: f(n) = O(T(n)) if f 𝑛
≤ 𝑐𝑇(𝑛) for some c, and 𝑛 ≥ 𝑛!.

Asymptotic performance

n

T(n)

n0

• Real-world design
situations often call for a
careful balancing of
engineering objectives.

• Asymptotic analysis is a
useful tool to help to
structure our thinking.

When n gets large enough, a Q(n2) algorithm
always beats a Q(n3) algorithm.

• We shouldn’t ignore
asymptotically slower
algorithms, however.

Running time for Linear Search

• T(n) = O(n)
• Worst case running time is also Θ(𝑛).
• T(n) = 𝑂(𝑛!)

• Can we do better ?
• Also, can maintain L as a dynamic data-

structure ?

Binary Search Trees
• Binary Search Trees (BSTs) are an important

data structure for dynamic sets
• Comprises of a number of linked nodes /

items / elements.
• In addition to satellite data, nodes have:
– key: an identifying field inducing a total ordering
– left: pointer to a left child (may be NULL)
– right: pointer to a right child (may be NULL)
– p: pointer to a parent node (NULL for root)

Binary Search Trees

• BST property:
key[leftSubtree(x)] £ key[x] £ key[rightSubtree(x)]

• Example:

F

B H

KDA

Inorder Tree Walk

• What does the following code do?
TreeWalk(x)

TreeWalk(left[x]);
print(x);
TreeWalk(right[x]);

• A: prints elements in sorted (increasing) order
• This is called an inorder tree walk
– Preorder tree walk: print root, then left, then right
– Postorder tree walk: print left, then right, then

root

Inorder Tree Walk

• Example:

• How long will a tree walk take?
• Prove that inorder walk prints in

monotonically increasing order

F

B H

KDA

Operations on BSTs: Search

• Given a key and a pointer to a node, returns
an element with that key or NULL:

TreeSearch(x, k)
if (x = NULL or k = key[x])

return x;
if (k < key[x])

return TreeSearch(left[x], k);
else

return TreeSearch(right[x], k);

BST Search: Example

• Search for D and C:

F

B H

KDA

Operations on BSTs: Search

• Here’s another function that does the same:

TreeSearch(x, k)
while (x != NULL and k != key[x])

if (k < key[x])
x = left[x];

else
x = right[x];

return x;

• Which of these two functions is more
efficient?

Operations of BSTs: Insert

• Adds an element x to the tree so that the
binary search tree property continues to hold

• The basic algorithm
– Like the search procedure above
– Insert x in place of NULL
– Use a “trailing pointer” to keep track of where you

came from (like inserting into singly linked list)

BST Insert: Example

• Example: Insert C

F

B H

KDA

C

BST Search/Insert: Running Time

• What is the running time of TreeSearch() or
TreeInsert()?

• A: O(h), where h = height of tree
• What is the height of a binary search tree?
• A: worst case: h = O(n) when tree is just a

linear string of left or right children
– We’ll keep all analysis in terms of h for now
– Later we’ll see how to maintain h = O(lg n)

More BST Operations

• BSTs are good for more than searching. For
example, can implement a priority queue

• What operations must a priority queue have?
– Insert
– Minimum
– Extract-Min

BST Operations: Minimum

• How can we implement a Minimum() query?
• What is the running time?

BST Operations: Successor

• Two cases:
– x has a right subtree: successor is minimum node

in right subtree
– x has no right subtree: successor is first ancestor

of x whose left child is also ancestor of x
• Intuition: As long as you move to the left up the tree,

you’re visiting smaller nodes.

• Predecessor: similar algorithm

BST Operations: Successor

BST Operations: Delete

• Deletion is a bit tricky
• 3 cases:
– x has no children:
• Remove x

– x has one child:
• Splice out x

– x has two children:
• Swap x with successor
• Perform case 1 or 2 to delete it

F

B H

KDA

C
Example: delete K
or H or B

BST Operations: Delete

• Why will case 2 always go to case 0 or case 1?
• A: because when x has 2 children, its

successor is the minimum in its right subtree
• Could we swap x with predecessor instead of

successor?
• A: yes. Would it be a good idea?
• A: might be good to alternate

