# CS60020: Foundations of Algorithm Design and Machine Learning

Instructor: Sourangshu Bhattacharya

Email: <a href="mailto:sourangshu@cse.iitkgp.ac.in">sourangshu@cse.iitkgp.ac.in</a>

### **COURSE ORGANISATION**

### Resources

### Teaching Assistants:

- Kiran Purohit
- Mainul Islam
- Website: <a href="http://cse.iitkgp.ac.in/~sourangshu/coursefiles/cs60020\_22S.html">http://cse.iitkgp.ac.in/~sourangshu/coursefiles/cs60020\_22S.html</a>
- Assignment submission / Test: CSE Moodle
   https://moodlecse.iitkgp.ac.in/moodle/login/index.php

### Resources

### Text Books:

- Introduction to Algorithms (Third Edition) Thomas H Cormen,
   Charles E Leiserson, Ronald L Rivest and Clifford Stein
- Pattern recognition and machine learning. Christopher M. Bishop springer, 2006.
- Latest Papers / Tutorials

# Pre-requisites

- Basic Programming and Data Structures.
  - For C Programming: Book by Kernigham and Richie.
  - For Data Structures: Section 10.1 of book by Cormen et al.
- Mathematics: functions, matrix algebra, optimization.
  - Basic graduate level books
- Discrete Maths: Graphs, Trees, etc.
  - Introduction to Graph Theory by Douglas West
- Logical thinking and Hard work !!

# **Evaluation**

• Grades:

- Assignments: 40

- Tests: 60

# **SYLLABUS AND LECTURE SCHEDULE**

# Algorithms

- An algorithm is an unambiguous specification of a sequence of steps to solve a problem.
- Important Aspects:
  - Application
  - Analysis
  - Design
- Example: Euclid's algorithm for finding the greatest common divisor.

# Algorithms

• Example: Euclid's algorithm for finding the greatest common divisor.

EUCLID(a,b)

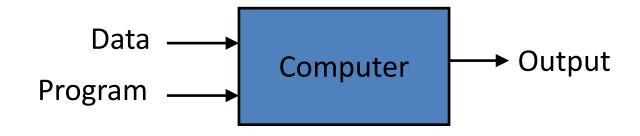
```
1 if b == 0

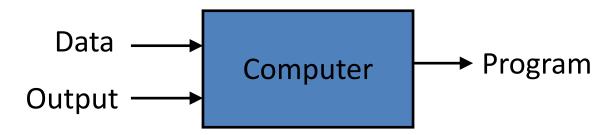
2 return a

3 else return \text{Euclid}(b, a \mod b)

\text{Euclid}(30, 21) = \text{Euclid}(21, 9)
= \text{Euclid}(9, 3)
= \text{Euclid}(3, 0)
= 3.
```

# Algorithm Design


| Week         | Algo topic                                 |
|--------------|--------------------------------------------|
| 28/3 - 31/3  | Searching, BST                             |
| 04/4 - 07/04 | Balanced BST                               |
| 11/4 - 14/4  | Discussion / Test                          |
| 18/4 - 21/4  | Sorting, Insertion, Bubble, Selection sort |
| 25/4 - 28/4  | D&C - Mergesort                            |
| 02/5 - 05/5  | Quicksort                                  |
| 09/5 - 12/5  | Heapsort, Priority queue                   |
| 16/5 - 19/5  | Midterm                                    |


# Algorithm Design

| Week        | Algo topic                             |
|-------------|----------------------------------------|
|             |                                        |
| 23/5 - 26/5 | Hashing                                |
| 30/5 - 02/6 | Graphs, MST                            |
| 06/6 - 09/6 | Dijkstra, Bellman-ford, Floyd -Warshal |
| 13/6 - 16/6 | Discussion                             |
| 20/6 - 23/6 | Endterm                                |

- Machine learning is a field of computer science that gives computers the ability to learn [from data] without being explicitly programmed.
- Example: Bayesian classifier for automatically filtering email spams.
- Aspects:
  - ApplicationModeling
  - Inference and learning

### **Traditional Programming**





## Magic?

### No, more like gardening

- Seeds = Algorithms
- Nutrients = Data
- Gardener = You
- Plants = Programs



### **Sample Applications**

- Web search
- Computational biology
- Finance
- E-commerce
- Space exploration
- Robotics
- Information extraction
- Social networks
- Debugging
- [Your favorite area]

| Week         | ML Topic                                      |
|--------------|-----------------------------------------------|
| 28/3 - 31/3  | Regression, Classification                    |
| 04/4 - 07/04 | Discussion / Test                             |
| 11/4 - 14/4  | Linear models, Overfitting,<br>Regularization |
| 18/4 - 21/4  | Non-parametric, K-NN                          |
| 25/4 - 28/4  | Bagging / Boosting, Random Forests            |
| 02/5 - 05/5  | Neural Network, SGD                           |
| 09/5 - 12/5  | RNN, CNN                                      |
| 16/5 - 19/5  | Midterm                                       |

| Week        | ML Topic                     |
|-------------|------------------------------|
| 23/5 - 26/5 | Discussion                   |
| 30/5 - 02/6 | SVM, Kernels                 |
| 06/6 - 09/6 | Basic Reinforcement Learning |
| 13/6 - 16/6 | Advanced topics              |
| 20/6 - 23/6 | Endterm                      |