# CS60020: Foundations of Algorithm Design and Machine Learning

Sourangshu Bhattacharya



#### Negative-weight cycles

**Recall:** If a graph G = (V, E) contains a negative-weight cycle, then some shortest paths may not exist.



**Bellman-Ford algorithm:** Finds all shortest-path lengths from a **source**  $s \in V$  to all  $v \in V$  or determines that a negative-weight cycle exists.



# Dijkstra's algorithm

```
d[s] \leftarrow 0
for each v \in V - \{s\}
    do d[v] \leftarrow \infty
S \leftarrow \varnothing
Q \leftarrow V \triangleright Q is a priority queue maintaining V - S
while Q \neq \emptyset
    do u \leftarrow \text{Extract-Min}(Q)
         S \leftarrow S \cup \{u\}
         for each v \in Adi[u]
              do if d[v] > d[u] + w(u, v)
                       then d[v] \leftarrow d[u] + w(u, v)
```



#### Example Failure Graph





## Bellman-Ford algorithm

```
d[s] \leftarrow 0
for each v \in V - \{s\}
do \ d[v] \leftarrow \infty
initialization
d[s] \leftarrow 0
for i \leftarrow 1 to |V| -1
    do for each edge (u, v) \in E
        do if d[v] > d[u] + w(u, v)

then d[v] \leftarrow d[u] + w(u, v)

relaxation

step
for each edge (u, v) \in E
    do if d[v] > d[u] + w(u, v)
             then report that a negative-weight cycle exists
At the end, d[v] = \delta(s, v), if no negative-weight cycles.
Time = O(VE).
```









Initialization.





Order of edge relaxation.





































End of pass 1.





































End of pass 2 (and 3 and 4).



#### Correctness

**Theorem.** If G = (V, E) contains no negative-weight cycles, then after the Bellman-Ford algorithm executes,  $d[v] = \delta(s, v)$  for all  $v \in V$ .



#### **Correctness**

**Theorem.** If G = (V, E) contains no negative-weight cycles, then after the Bellman-Ford algorithm executes,  $d[v] = \delta(s, v)$  for all  $v \in V$ . *Proof.* Let  $v \in V$  be any vertex, and consider a shortest path p from s to v with the minimum number of edges.



Since p is a shortest path, we have

$$\delta(s, v_i) = \delta(s, v_{i-1}) + w(v_{i-1}, v_i)$$
.



#### **Correctness** (continued)



Initially,  $d[v_0] = 0 = \delta(s, v_0)$ , and  $d[v_0]$  is unchanged by subsequent relaxations (because of the lemma from that  $d[v] \ge \delta(s, v)$ ).

- After 1 pass through E, we have  $d[v_1] = \delta(s, v_1)$ .
- After 2 passes through E, we have  $d[v_2] = \delta(s, v_2)$ . M
- After k passes through E, we have  $d[v_k] = \delta(s, v_k)$ . Since G contains no negative-weight cycles, p is simple. Longest simple path has  $\leq |V| - 1$  edges.



# Detection of negative-weight cycles

**Corollary.** If a value d[v] fails to converge after |V| - 1 passes, there exists a negative-weight cycle in G reachable from S.

#### **Shortest paths**

#### Single-source shortest paths

- Nonnegative edge weights
  - Dijkstra's algorithm:  $O(E + V \lg V)$
- General
  - lacktriangle Bellman-Ford: O(VE)
- DAG
  - One pass of Bellman-Ford: O(V + E)

#### All-pairs shortest paths

- Nonnegative edge weights
  - ◆Dijkstra's algorithm |V| times:  $O(VE + V^2 \lg V)$
- General
  - ◆Three algorithms today.

#### All-pairs shortest paths

Input: Digraph G = (V, E), where  $V = \{1, 2, ..., n\}$ , with edge-weight function  $w : E \to \mathbb{R}$ . Output:  $n \times n$  matrix of shortest-path lengths  $\delta(i, j)$  for all  $i, j \in V$ .

#### **IDEA:**

- Run Bellman-Ford once from each vertex.
- Time =  $O(V^2E)$ .
- Dense graph  $(n^2 \text{ edges}) \Rightarrow \Theta(n^4)$  time in the worst case.

Good first try!

## Dynamic programming

Consider the  $n \times n$  adjacency matrix  $A = (a_{ij})$  of the digraph, and define

 $d_{ij}^{(m)}$  = weight of a shortest path from i to j that uses at most m edges.

Claim: We have

$$d_{ij}^{(0)} = \begin{cases} 0 & \text{if } i = j, \\ \infty & \text{if } i \neq j; \end{cases}$$

and for m = 1, 2, ..., n - 1,

$$d_{ij}^{(m)} = \min_{k} \{d_{ik}^{(m-1)} + a_{kj}\}.$$



Note: No negative-weight cycles implies

$$\delta(i,j) = d_{ij}^{(n-1)} = d_{ij}^{(n)} = d_{ij}^{(n+1)} = L$$

### Floyd-Warshall algorithm

Also dynamic programming, but faster!

Define  $c_{ij}^{(k)}$  = weight of a shortest path from i to j with intermediate vertices belonging to the set  $\{1, 2, ..., k\}$ .



Thus, 
$$\delta(i,j) = c_{ij}^{(n)}$$
. Also,  $c_{ij}^{(0)} = a_{ij}^{(n)}$ .

#### Floyd-Warshall recurrence

$$c_{ij}^{(k)} = \min_{k} \{c_{ij}^{(k-1)}, c_{ik}^{(k-1)} + c_{kj}^{(k-1)}\}$$



intermediate vertices in  $\{1, 2, ..., k\}$ 

# Pseudocode for Floyd-Warshall

```
for k \leftarrow 1 to n
do for i \leftarrow 1 to n
do for j \leftarrow 1 to n
do if c_{ij} > c_{ik} + c_{kj}
then c_{ij} \leftarrow c_{ik} + c_{kj}
relaxation
```

#### **Notes:**

- Okay to omit superscripts, since extra relaxations can't hurt.
- Runs in  $\Theta(n^3)$  time.
- Simple to code.
- Efficient in practice.