
CS60020: Foundations of
Algorithm Design and Machine

Learning
Sourangshu Bhattacharya

TOPOLOGICAL SORT

Topological sort

• We have a set of tasks and a set of dependencies
(precedence constraints) of form “task A must be
done before task B”

• Topological sort: An ordering of the tasks that
conforms with the given dependencies

• Goal: Find a topological sort of the tasks or decide
that there is no such ordering

Examples
• Scheduling: When scheduling task graphs in

distributed systems, usually we first need to sort the
tasks topologically
...and then assign them to resources (the most
efficient scheduling is an NP-complete problem)

• Or during compilation to order modules/libraries

a

d c

g f

b

e

Examples

• Resolving dependencies: apt-get uses
topological sorting to obtain the admissible
sequence in which a set of Debian packages
can be installed/removed

Topological sort more formally

• Suppose that in a directed graph G = (V, E)
vertices V represent tasks, and each edge (u, v)∊E
means that task u must be done before task v

• What is an ordering of vertices 1, ..., |V| such
that for every edge (u, v), u appears before v in
the ordering?

• Such an ordering is called a topological sort of G
• Note: there can be multiple topological sorts of G

Topological sort more formally

• Is it possible to execute all the tasks in G in an order
that respects all the precedence requirements given
by the graph edges?

• The answer is "yes" if and only if the directed graph
G has no cycle!
(otherwise we have a deadlock)

• Such a G is called a Directed Acyclic Graph, or just a
DAG

DFS Algorithm

u.d : Discovery Time
u.F : Finishing Time

u.color : tracks the visited status.

Algorithm for TS

• TOPOLOGICAL-SORT(G):
1) call DFS(G) to compute finishing times f[v] for

each vertex v
2) as each vertex is finished, insert it onto the front

of a linked list
3) return the linked list of vertices

• Note that the result is just a list of vertices in
order of decreasing finish times f[]

Edge classification by DFS

Edge (u,v) of G is classified as a:

(1) Tree edge iff u discovers v during the DFS: P[v] = u

If (u,v) is NOT a tree edge then it is a:
(2) Forward edge iff u is an ancestor of v in the DFS tree
(3) Back edge iff u is a descendant of v in the DFS tree
(4) Cross edge iff u is neither an ancestor nor a
descendant of v

Edge classification by DFS

b

a

Tree edges
Forward edges
Back edges
Cross edges

c

c

The edge classification
depends on the particular
DFS tree!

Edge classification by DFS

b

a

Tree edges
Forward edges
Back edges
Cross edges

c

b

a

c

Both are valid

The edge classification
depends on the particular
DFS tree!

DAGs and back edges

• Can there be a back edge in a DFS on a DAG?
• NO! Back edges close a cycle!
• A graph G is a DAG <=> there is no back edge

classified by DFS(G)

Back to topological sort

• TOPOLOGICAL-SORT(G):
1) call DFS(G) to compute finishing times f[v] for

each vertex v
2) as each vertex is finished, insert it onto the front

of a linked list
3) return the linked list of vertices

Topological sort

b

a

c

ed

f

Let’s say we start the DFS
from the vertex c

d = ∞
f = ∞

d = ∞
f = ∞

d = ∞
f = ∞

d = ∞
f = ∞

d = ∞
f = ∞

d = ∞
f = ∞

Time = 1Time = 2

c
d = 1
f = ∞

Next we discover the vertex d

1) Call DFS(G) to compute the
finishing times f[v]

Topological sort

b

a

c

ed

f

Let’s say we start the DFS
from the vertex c

d = ∞
f = ∞

d = ∞
f = ∞

d = ∞
f = ∞

d = ∞
f = ∞

d = ∞
f = ∞

Time = 2Time = 3

c
d = 1
f = ∞

Next we discover the vertex d

d
d = 2
f = ∞

1) Call DFS(G) to compute the
finishing times f[v]

Topological sort

b

a

c

ed

f

1) Call DFS(G) to compute the
finishing times f[v]

Let’s say we start the DFS
from the vertex c

d = ∞
f = ∞

d = ∞
f = ∞

d = 3
f = ∞

d = ∞
f = ∞

Time = 3Time = 4

c
d = 1
f = ∞

Next we discover the vertex d

d
d = 2
f = ∞

Next we discover the vertex f

fd = 3
f = 4

f is done, move back to d

2) as each vertex is finished,
insert it onto the front of a
linked list

f

Topological sort

b

a

c

ed

f

Let’s say we start the DFS
from the vertex c

d = ∞
f = ∞

d = ∞
f = ∞

d = ∞
f = ∞

Time = 4Time = 5

c
d = 1
f = ∞

Next we discover the vertex d

d
d = 2
f = 5

Next we discover the vertex f

fd = 3
f = 4

f is done, move back to d

d is done, move back to c

1) Call DFS(G) to compute the
finishing times f[v]

fd

Topological sort

b

a

c

ed

f

Let’s say we start the DFS
from the vertex c

d = ∞
f = ∞

d = ∞
f = ∞

d = ∞
f = ∞

Time = 5

c
d = 1
f = ∞

Next we discover the vertex d

d
d = 2
f = 5

Next we discover the vertex f

fd = 3
f = 4

f is done, move back to d

d is done, move back to c

Next we discover the vertex e

Time = 6

1) Call DFS(G) to compute the
finishing times f[v]

fd

Topological sort

b

a

c

ed

f

Let’s say we start the DFS
from the vertex c

d = ∞
f = ∞

d = ∞
f = ∞

d = 6
f = ∞

Time = 6Time = 7

e

d = 1
f = ∞

Next we discover the vertex d

d
d = 2
f = 5

Next we discover the vertex f

fd = 3
f = 4

f is done, move back to d

d is done, move back to c

Next we discover the vertex e

Both edges from e are
cross edges

e is done, move back to c

1) Call DFS(G) to compute the
finishing times f[v]

fde

Topological sort

b

a

c

ed

f

Let’s say we start the DFS
from the vertex c

d = ∞
f = ∞

d = ∞
f = ∞

d = 6
f = 7

Time = 7Time = 8

e

d = 1
f = ∞

Next we discover the vertex d

d
d = 2
f = 5

Next we discover the vertex f

fd = 3
f = 4

f is done, move back to d

d is done, move back to c

Next we discover the vertex e

e is done, move back to c

1) Call DFS(G) to compute the
finishing times f[v]

fde c is done as wellc

Just a note: If there was (c,f)
edge in the graph, it would be
classified as a forward edge
(in this particular DFS run)

Topological sort

b

a

c

ed

f

Let’s now call DFS visit from
the vertex a

d = ∞
f = ∞

d = ∞
f = ∞

d = 6
f = 7

Time = 9

e

d = 1
f = 8

d
d = 2
f = 5

fd = 3
f = 4

1) Call DFS(G) to compute the
finishing times f[v]

fdec

a
d = 9
f = ∞

Next we discover the vertex c,
but c was already processed
=> (a,c) is a cross edge

Time = 10

Next we discover the vertex b

Topological sort

b

a

c

ed

f

Let’s now call DFS visit from
the vertex a

d = 10
f = ∞

d = 6
f = 7

Time = 10

e

d = 1
f = 8

d
d = 2
f = 5

fd = 3
f = 4

1) Call DFS(G) to compute the
finishing times f[v]

fdec

a
d = 9
f = ∞

Next we discover the vertex c,
but c was already processed
=> (a,c) is a cross edge

Time = 11

Next we discover the vertex b

b is done as (b,d) is a cross
edge => now move back to c

b
d = 10
f = 11

b

Topological sort

b

a

c

ed

f

Let’s now call DFS visit from
the vertex a

d = 6
f = 7

Time = 11

e

d = 1
f = 8

d
d = 2
f = 5

fd = 3
f = 4

1) Call DFS(G) to compute the
finishing times f[v]

fdec

a
d = 9
f = ∞

Next we discover the vertex c,
but c was already processed
=> (a,c) is a cross edge

Time = 12

Next we discover the vertex b

b is done as (b,d) is a cross
edge => now move back to c

b
d = 10
f = 11

b
a is done as well

Topological sort

b

a

c

ed

f

Let’s now call DFS visit from
the vertex a

d = 6
f = 7

Time = 11

e

d = 1
f = 8

d
d = 2
f = 5

fd = 3
f = 4

1) Call DFS(G) to compute the
finishing times f[v]

fdec

a
d = 9
f = 12

Next we discover the vertex c,
but c was already processed
=> (a,c) is a cross edge

Time = 13

Next we discover the vertex b

b is done as (b,d) is a cross
edge => now move back to c

b
d = 10
f = 11

b
a is done as well

a

WE HAVE THE RESULT!
3) return the linked list of

vertices

Topological sort

b

a

c

ed

f

d = 6
f = 7

Time = 11

e

d = 1
f = 8

d
d = 2
f = 5

fd = 3
f = 4

fdec

a
d = 9
f = 12

Time = 13

b
d = 10
f = 11

ba

The linked list is sorted in
decreasing order of finishing
times f[]

Try yourself with different
vertex order for DFS visit

Note: If you redraw the graph
so that all vertices are in a line
ordered by a valid topological
sort, then all edges point
„from left to right“

Time complexity of TS(G)

• Running time of topological sort:
Θ(n + m)

where n=|V| and m=|E|
• Why? Depth first search takes Θ(n + m) time

in the worst case, and inserting into the front
of a linked list takes Θ(1) time

Proof of correctness
• Theorem: TOPOLOGICAL-SORT(G) produces a

topological sort of a DAG G

• The TOPOLOGICAL-SORT(G) algorithm does a DFS
on the DAG G, and it lists the nodes of G in order
of decreasing finish times f[]

• We must show that this list satisfies the
topological sort property, namely, that for every
edge (u,v) of G, u appears before v in the list

• Claim: For every edge (u,v) of G: f[v] < f[u] in DFS

Proof of correctness

“For every edge (u,v) of G, f[v] < f[u] in this DFS”

• The DFS classifies (u,v) as a tree edge, a
forward edge or a cross-edge (it cannot be a
back-edge since G has no cycles):
i. If (u,v) is a tree or a forward edge ⇒	v is a

descendant of u ⇒		f[v] < f[u]
ii. If (u,v) is a cross-edge

Proof of correctness

“For every edge (u,v) of G: f[v] < f[u] in this DFS”

ii. If (u,v) is a cross-edge:

• as (u,v) is a cross-edge, by definition, neither u
is a descendant of v nor v is a descendant of u:
d[u] < f[u] < d[v] < f[v]

or
d[v] < f[v] < d[u] < f[u]

since (u,v) is an edge, v is
surely discovered before
u's exploration completes

f[v] < f[u]

Q.E.D. of Claim

Proof of correctness

• TOPOLOGICAL-SORT(G) lists the nodes of G
from highest to lowest finishing times

• By the Claim, for every edge (u,v) of G:
f[v] < f[u]

⇒ u will be before v in the algorithm's list
• Q.E.D of Theorem

BREADTH FIRST SEARCH

Breadth-first search
• breadth-first search (BFS): Finds a path between two nodes by taking

one step down all paths and then immediately backtracking.
– Often implemented by maintaining a queue of vertices to visit.

• BFS always returns the shortest path (the one with the fewest edges)
between the start and the end vertices.
– to b: {a, b}
– to c: {a, e, f, c}
– to d: {a, d}
– to e: {a, e}
– to f: {a, e, f}
– to g: {a, d, g}
– to h: {a, d, h}

a

e

b c

hg

d f

BFS pseudocode
function bfs(v1, v2):

queue := {v1}.
mark v1 as visited.

while queue is not empty:
v := queue.removeFirst().
if v is v2:

a path is found!

for each unvisited neighbor n of v:
mark n as visited.

queue.addLast(n).

// path is not found.

• Trace bfs(a, f) in the above graph.

a

e

b c

hg

d f

BFS observations
• optimality:

– always finds the shortest path (fewest edges).
– in unweighted graphs, finds optimal cost path.
– In weighted graphs, not always optimal cost.

• retrieval: harder to reconstruct the actual sequence of vertices or
edges in the path once you find it
– conceptually, BFS is exploring many possible paths in parallel, so it's not easy to

store a path array/list in progress
– solution: We can keep track of the path by storing predecessors for each vertex

(each vertex can store a reference to a previous vertex).

• DFS uses less memory than BFS, easier to reconstruct the path once
found; but DFS does not always find shortest path. BFS does.

a

e

b c

hg

d f

DFS, BFS runtime
• What is the expected runtime of DFS and BFS, in terms of the number

of vertices V and the number of edges E ?

• Answer: O(|V| + |E|)
– where |V| = number of vertices, |E| = number of edges
– Must potentially visit every node and/or examine every edge once.

– why not O(|V| * |E|) ?

• What is the space complexity of each algorithm?
– (How much memory does each algorithm require?)

BFS that finds path
function bfs(v1, v2):

queue := {v1}.
mark v1 as visited.

while queue is not empty:
v := queue.removeFirst().
if v is v2:

a path is found! (reconstruct it by following .prev back to v1.)

for each unvisited neighbor n of v:
mark n as visited. (set n.prev = v.)

queue.addLast(n).

// path is not found.

– By storing some kind of "previous" reference associated with each vertex, you
can reconstruct your path back once you find v2.

a

e

b c

hg

d f
prev

