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OVERVIEW



What is Machine Learning?
It is very hard to write programs that solve problems like recognizing 

a face.
We don’t know what program to write because we don’t know 

how our brain does it.
Even if we had a good idea about how to do it, the program 

might be horrendously complicated.
Instead of writing a program by hand, we collect lots of examples

that specify the correct output for a given input.
A machine learning algorithm then takes these examples and 

produces a program that does the job.
The program produced by the learning algorithm may look very 

different from a typical hand-written program. It may contain 
millions of numbers.

If we do it right, the program works for new cases as well as the 
ones we trained it on.



A classic example of a task that requires machine 
learning: It is very hard to say what makes a 2



Some more examples of tasks that are best 
solved by using a learning algorithm

Recognizing patterns:
Facial identities or facial expressions
Handwritten or spoken words
Medical images

Generating patterns:
Generating images or motion sequences

Recognizing anomalies:
Unusual sequences of credit card transactions 
Unusual patterns of sensor readings in a nuclear power plant 

or unusual sound in your car engine.
Prediction:

Future stock prices or currency exchange rates 



Some web-based examples of machine learning

The web contains a lot of data. Tasks with very big datasets often 
use machine learning

especially if the data is noisy or non-stationary.
Spam filtering, fraud detection: 

The enemy adapts so we must adapt too.
Recommendation systems:

Lots of noisy data. Million dollar prize!
Information retrieval:

Find documents or images with similar content.
Data Visualization:

Display a huge database in a revealing way



Displaying the structure of a set of documents 
using Latent Semantic Analysis (a  form of PCA)

Each document is converted 
to a vector of word counts. 
This vector is then mapped to 
two coordinates and displayed 
as a colored dot. The colors 
represent the hand-labeled 
classes. 

When the documents are laid 
out in 2-D, the classes are not 
used. So we can judge how 
good the algorithm is by 
seeing if the classes are 
separated.



Machine Learning & Symbolic AI

Knowledge Representation works with facts/assertions and 
develops rules of logical inference. The rules can handle 
quantifiers. Learning and uncertainty are usually ignored.

Expert Systems used logical rules or conditional probabilities 
provided by “experts” for specific domains.

Graphical Models treat uncertainty properly and allow learning (but 
they often ignore quantifiers and use a fixed set of variables)
Set of logical assertions à values of a subset of the variables 

and local models of the probabilistic interactions between 
variables.

Logical inference à probability distributions over subsets of the 
unobserved variables (or individual ones)

Learning = refining the local models of the interactions. 



Machine Learning & Statistics

A lot of machine learning is just a rediscovery of things that 
statisticians already knew. 

But the emphasis is very different:
A good piece of statistics: Clever proof that a relatively 

simple estimation procedure is asymptotically unbiased.
A good piece of machine learning: Demonstration that a 

complicated algorithm produces impressive results on a 
specific task.

Data-mining: Using very simple machine learning techniques on 
very large databases because computers are too slow to do 
anything more interesting with ten billion examples.



A spectrum of machine learning tasks

Low-dimensional data (e.g. less than 
100 dimensions)

Lots of noise in the data

There is not much structure in the 
data, and what structure there is, 
can be represented by a fairly 
simple model.

The main problem is distinguishing 
true structure from noise.

High-dimensional data (e.g. more 
than 100 dimensions)

The noise is not sufficient to obscure 
the structure in the data if we 
process it right.

There is a huge amount of structure 
in the data, but the structure is 
too complicated to be 
represented by a simple model.

The main problem is figuring out a 
way to represent the complicated 
structure that allows it to be 
learned.

Statistics---------------------Artificial Intelligence



REGRESSION



Linear Basis Function Models (1)

Example: Polynomial Curve Fitting



Linear Basis Function Models (2)

Generally

where Áj(x) are known as basis functions.
Typically, Á0(x) = 1, so that w0 acts as a bias.
In the simplest case, we use linear basis 

functions : Ád(x) = xd.



Linear Basis Function Models (3)

Polynomial basis functions:

These are global; a small 
change in x affect all basis 
functions.



Linear Basis Function Models (4)

Gaussian basis functions:

These are local; a small change 
in x only affect nearby basis 
functions. µj and s control 
location and scale (width).



Linear Basis Function Models (5)

Sigmoidal basis functions:

where

Also these are local; a small 
change in x only affect nearby 
basis functions. µj and s
control location and scale 
(slope).



Least Squares Estimation
A a polynomial curve is represented by the 

parameters 𝑤.
𝑓 𝑥 = 𝑥 − 𝑥!

𝑓 𝑥 = 𝑥 + 𝑥!

Error (loss) function for a given parameter:

Estimate 𝑤∗ = min# 𝐸(𝑤)



Maximum Likelihood and Least Squares (1)

Assume observations from a deterministic function 
with added Gaussian noise:

which is the same as saying,

Given observed inputs,                            , and targets,
, we obtain the likelihood function  

where



Maximum Likelihood and Least Squares (2)

Taking the logarithm, we get

where

is the sum-of-squares error.



Computing the gradient and setting it to zero yields

Solving for w, we get 

where

Maximum Likelihood and Least Squares (3)

The Moore-Penrose 
pseudo-inverse,       .



Geometry of Least Squares

Consider

S is spanned by                    .
wML minimizes the distance 
between t and its orthogonal 
projection on S, i.e. y.

N-dimensional
M-dimensional



Normal Equations

If is invertible,

When is invertible ?
Recall: Full rank matrices are invertible.

What if is not invertible ?  

p xp p x1 p x1



Gradient Descent

1
4

Even when is invertible, might be computationally expensive if A is huge.

Treat as optimization problem

Observation: J(β) is convex in β.

J(β1)

β1
β1 β2

How to find the minimizer?

J(β1, β2)



Gradient Descent

Even when is invertible, might be computationally expensive if A is huge.

Initialize:

Update:

0 if =

Stop: when some criterion met e.g. fixed # iterations, or < ε.

Since J(b) is convex, move along negative of gradient

step size



Effect of step--size α

Large α => Fast convergence but larger residual error  
Also possible oscillations

Small α => Slow convergence but small residual error



0th Order
Polynomial

n=10



1st Order
Polynomial

Slide courtesy of William Cohen



3rd Order
Polynomial

Slide courtesy of William Cohen



9th Order
Polynomial

Slide courtesy of William Cohen



Over-fitting

Root-Mean-Square (RMS) Error

Slide courtesy of William Cohen



Polynomial Coefficients

Slide courtesy of William Cohen



Regularization

Penalize large coefficient values

Slide courtesy of William Cohen



Regularization:

Slide courtesy of William Cohen



Over Regularization

Slide courtesy of William Cohen



Regularization



Regularized Least Squares (1)

Consider the error function:

With the sum-of-squares error function and a 
quadratic regularizer, we get  

which is minimized by

Data term + Regularization term

¸ is called the 
regularization 
coefficient.



Regularized Least Squares (2)

With a more general regularizer, we have

Lasso Quadratic



Regularized Least Squares (3)

Lasso tends to generate sparser solutions than a 
quadratic 
regularizer. 



Multiple Outputs (1)

Analogously to the single output case we have:

Given observed inputs,                            , and targets,
, we obtain the log likelihood function



Multiple Outputs (2)

Maximizing with respect to W, we obtain

If we consider a single target variable, tk, we see that

where                               , which is identical with the 
single output case.



CLASSIFICATION



Discrete and Continuous Labels

Sports  
Science  
News

Classification

Regression

Anemic cell  
Healthy cell

Stock Market  
Prediction

Y = ?

X = Feb01

X = Document Y = Topic X = Cell Image Y = Diagnosis



An example application
An emergency room in a hospital measures 17 

variables (e.g., blood pressure, age, etc) of newly 
admitted patients. 

A decision is needed: whether to put a new patient in 
an intensive-care unit. 

Due to the high cost of ICU, those patients who may 
survive less than a month are given higher priority. 

Problem: to predict high-risk patients and discriminate 
them from low-risk patients. 



Another application
A credit card company receives thousands of 

applications for new cards. Each application 
contains information about an applicant, 
age 
Marital status
annual salary
outstanding debts
credit rating
etc. 

Problem: to decide whether an application should 
approved, or to classify applications into two 
categories, approved and not approved. 



Data: A set of data records (also called 
examples, instances or cases) described 
by
k attributes: A1, A2, … Ak. 
a class: Each example is labelled with a pre-

defined class. 
Goal: To learn a classification model from 

the data that can be used to predict the 
classes of new (future, or test) 
cases/instances.

The data and the goal



Supervised learning process: two steps
n Learning (training): Learn a model using the 

training data
n Testing: Test the model using unseen test data

to assess the model accuracy

,
cases test ofnumber  Total

tionsclassificacorrect  ofNumber 
=Accuracy



Least squares classification

Binary classification.
Each class is described by it’s own linear model:

𝑦 𝑥 = 𝑤%𝑥 + 𝑤'
Compactly written as:

y 𝒙 = 𝑾%𝒙
W is [𝑤 𝑤'].

𝐸. 𝑾 = /1 2 𝑿𝑾− 𝒕 %(𝑿𝑾− 𝒕)
𝑛89 row of 𝑿 is 𝑥:, the 𝑛89 datapoint.
𝒕 is vector of +1, -1.



Least squares classification

Least squares 𝑾 is:
𝑾 = 𝑿𝑻𝑿 %𝟏𝑿𝑻𝒕

Problem is affected by outliers.



Least squares classification



From Linear to Logistic Regression

Assumes the following functional form for P(Y|X):

Logistic function applied to a linear  
function of the data

Logistic  
function
(or Sigmoid):

z

lo
gi

t(
z)

Features can be discrete or continuous!



Logistic Regression is a Linear  Classifier!

Assumes the following functional form for P(Y|X):

Decision boundary:

1

1

(Linear Decision Boundary)



Logistic Regression is a Linear  Classifier!

Assumes the following functional form for P(Y|X):

1

1



Logistic Regression

Label t ∈ {+1,−1}modeled as:
𝑃 𝑡 = 1 𝑥, 𝑤 = 𝜎 𝑤'𝑥

𝑃 𝑦 𝑥, 𝑤 = 𝜎 𝑦𝑤'𝑥 , 𝑦 ∈ {+1,−1}
Given a set of parameters w, the probability or 

likelihood of a datapoint (x,t):
𝑃 𝑡 𝑥, 𝑤 = 𝜎(𝑡𝑤'𝑥)



Logistic Regression

Given a training dataset { 𝑥(, 𝑡( , … , 𝑥) , 𝑡) }, 
log likelihood of a model w is given by:

𝐿 𝑤 =<
*

ln(𝑃 𝑡* 𝑥*, 𝑤 )

Using principle of maximum likelihood, the 
best w is given by:

w*= argmaxw L(w)



Logistic Regression

Final Problem:

m𝑎𝑥
=

>
?@A

:

−log(1 + exp(−𝑡:𝑤%𝑥:))

Or, min
=
∑?@A: log(1 + exp −𝑡:𝑤%𝑥: )

Error function:

𝐸 𝑤 =>
?@A

:

log(1 + exp −𝑡:𝑤%𝑥: )

𝐸(𝑤) is convex.



Logistic Regression

Final Problem:

m𝑎𝑥
=

>
?@A

:

−log(1 + exp(−𝑡:𝑤%𝑥:))

Regularized Version: 

𝑚𝑎𝑥>
?@A

:

−log(1 + exp(−𝑡:𝑤%𝑥:)) − 𝜆𝑤%𝑤

Or, min
=
∑?@A: log(1 + exp −𝑡:𝑤%𝑥: ) + 𝜆 𝑤

N



Properties of Error function

Derivatives:

𝛻𝐸 𝑤 = >
?@A

:

− 1 − 𝜎 𝑡?𝑤%𝑥? 𝑡?𝑥?

𝛻𝐸 𝑤 =>
?@A

:

𝜎 𝑤%𝑥? − 𝑡? 𝑥?

𝛻N𝐸 𝑤 = >
?@A

:

𝜎 𝑡?𝑤%𝑥? 1 − 𝜎 𝑡?𝑤%𝑥? 𝑥?𝑥?%



Gradient Descent

Problem: min f(x)
f(x): differentiable
g(x): gradient of f(x)
Negative gradient is

steepest descent
direction. 

At each step move in
the gradient direction
so that there is 
“sufficient decrease”.



Gradient Descent



Logistic Regression is a Linear  Classifier!

Assumes the following functional form for P(Y|X):

1

1



Logistic Regression for more than 2  classes

• Logistic regression in more general case, where
Y {y1,…,yK}

for k<K

for k=K (normalization, so no weights for this class)



Multiple classes

One-vs-all: 𝐾 − 1 hyperplanes each separating 
𝐶(, … , 𝐶+%( classes from rest.

Otherwise 𝐶+
Low number of

classifiers.



Multiple classes

One-vs-one: Every pair 𝐶, − 𝐶- get a boundary.
Final by majority vote.
High number of

classifiers.



Multiple classes

K-linear discriminant functions: 
𝑦. 𝑥 = 𝑤.'𝒙 + 𝑤./

Assign 𝑥 to 𝐶. if 𝑦.(𝑥) ≥ 𝑦-(𝑥) for all 𝑗 ≠ 𝑘
Decision boundary:

𝑤. −𝑤-
'
𝒙 + 𝑤./ −𝑤-/ = 0

Decision region is singly connected:
𝑥 = 𝜆𝑥0 + 1 − 𝜆 𝑥1

If 𝑥0 and 𝑥1 have same label, so does 𝑥.



Multiple Classes


