CS60020: Foundations of
Algorithm Design and Machine
Learning

;":"" Dynamic programming

N
WY

Design technique, like divide-and-conquer.

Example: Longest Common Subsequence (LCS)

* Given two sequences x[1 .. m| and y[1 . . n], find
a longest subsequence common to them both.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.2

M—q
“ 4+ Dynamic programming

WY e

Design technique, like divide-and-conquer.

Example: Longest Common Subsequence (LCS)

* Given two sequences x[1 .. m| and y[1 . . n], find
a longest subsequence common to them both.

\ (14 99 nOZ_ “the,’

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.3

m Dynamic programming

\‘ \‘

Design technique, like divide-and-conquer.

Example: Longest Common Subsequence (LCS)

* Given two sequences x[1 .. m]| and y[1 . .], find
a longest subsequence common to them both.

\66 ”nOZ_ ccthe”
x A B C B D A B

w2wB D C A B A

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L154

m Dynamic programming

\‘ \‘

Design technique, like divide-and-conquer.

Example: Longest Common Subsequence (LCS)

* Given two sequences x[1 .. m]| and y[1 . .], find
a longest subsequence common to them both.

\ (14 99 nOZ_ “the,’

A B C B D A B
| BCBA-
[N

» B D C A B A LCS(.)

functional notation,
but not a function

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.5

-

=1 Brute-force LCS algorithm

«
\\\‘

Check every subsequence of x[1 . . m] to see
if 1t 1s also a subsequence of y[1 . . n].

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.6

"+ Brute-force LCS algorithm

Check every subsequence of x[1 . . m] to see
if 1t 1s also a subsequence of y[1 . . n].

Analysis
* Checking = O(n) time per subsequence.

* 2 subsequences of x (each bit-vector of

length m determines a distinct subsequence
of x).

Worst-case running time = O(n2™)
= exponential time.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.7

=« Towards a better algorithm

\
Y \‘

Simplification:

1. Look at the /length of a longest-common
subsequence.

2. Extend the algorithm to find the LCS itself.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.8

ALGORITHMS

7.« Towards a better algorithm

\
Y \‘

Simplification:

1. Look at the /length of a longest-common
subsequence.

2. Extend the algorithm to find the LCS itself.

Notation: Denote the length of a sequence s
by | s|.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.9

S0 Towards a better algorithm

|y
Y \‘

Simplification:

1. Look at the /length of a longest-common
subsequence.

2. Extend the algorithm to find the LCS itself.
Notation: Denote the length of a sequence s
by | s|.

Strategy: Consider prefixes of x and y.

* Define c[i, j] = | LCS(x[1 ..], y[1 ../])].

* Then, c[m, n] = | LCS(x, y)|.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.10

Recursive formulation

i =
-
W

Theorem.

N e b Wy e W Il if x[i] = yl/],
LTI max {efi1,], efi, j 1]} otherwise.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.11

Recursive formulation

Theorem. |
[l if x[1] =[],
cli, 1= max {c[i-1,j], c[i,j~1]} otherwise.
Proof. Case x[i] = y[/]:

1 2] m

X: L _I

1 2 =\ J n

8 I I N)

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.12

Recursive formulation

(I
-
W

Théorem. .

o [efi-l, 1]+ 1 if x[i] = y[j],
cli, 1= max {c[i—1,], c[i, j~1]} otherwise.

Proof. Case x[i] = y[]]:

1 2] m

X: L I

1 2 =\ / n

1 N I N\

Letz[l .. k]=LCS(x[1..7],y[l../]),where c|i, /]
= k. Then, z[k] = x[i], or else z could be extended.
Thus, z[1 .. k—1]1sCSof x[1 ../—1]and y[1 .. /—1].

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.13

= Proof (continued)

Claim: z[1 .. /1] =LCS(x[1 .. 1], y[1../-1]).
Suppose w 1s a longer CS of x[1 .. i—1] and
y[1..j-1], that1s, |w|> k—1. Then, cut and
paste: w || z[k| (w concatenated with z[£]) 1s a
common subsequence of x[1 .. 7] and y[] .. /]

with |w || z[k]| > k. Contradiction, proving the
claim.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.14

71 Proof (continued)

U=
\\\‘ \‘ e

Claim: z[1 .. /1] =LCS(x[1 .. 1], y[1../-1]).
Suppose w 1s a longer CS of x[1 .. i—1] and
y[1..j-1], that1s, |w|> k—1. Then, cut and
paste: w || z[k| (w concatenated with z[£]) 1s a
common subsequence of x[1 .. 7] and y[] .. /]

with |w || z[k]| > k. Contradiction, proving the
claim.
Thus, c[i—1, j—1] = /1, which implies that c[i, /]
=cli—1,j-1]+ 1.

Other cases are similar.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.15

Dyhamlc programming hallmark

ny

D
(D Optimal substructure
An optimal solution to a problem
(instance) contains optimal
solutions to subproblems.)

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.16

Dyhamlc programming hallmark

&)

(D Optimal substructure

An optimal solution to a problem
(instance) contains optimal
solutions to subproblems.

If z=LCS(x, y), then any prefix of z 1s
an LCS of a prefix of x and a prefix of y.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.17

.+ Recursive algorithm for LCS
LCS(x, v, 1, /)
it x[7] = y| J|
then c[7, /] « LCS(x, y, i—1,/-1) + 1
else c[i, j| < max{LCS(x, y, i1,).
LCS(x, y, i,j—l)}

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.18

71 Recursive algorithm for LCS

U=
\\“ \‘

LCS(x, v, 1,))

it x[i] = y[/]
then c|[i, j| < LCS(x, v, i—1,j—-1) + 1
else c[i, j| < max{LCS(x, y, i1,).

LCS(X, Vs la]_l)}

Worst-case: x[i] # y[/|, in which case the
algorithm evaluates two subproblems, each
with only one parameter decremented.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.19

ALGORITHMS

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.20

Recursion tree

(24 53
() (23 (23 mn
(1) (22 (1) (22

Height = m + n = work potentially exponential.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.21

.« Recursion tree

\ L
«
\\\‘ S

m=3 n=4: @.
(24 same 33
subproblem

W 5 G @ m
) @) G @

Height = m + n = work potentially exponential.,
but we’re solving subproblems already solved!

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.22

\l((Rllll\l

Dyhamlc programming hallmark

ny

&
(D Overlapping subproblems
A recursive solution contains a
“small” number of distinct
subproblems repeated many times.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.23

,\Dyhamlc programming hallmark
&

(D Overlapping subproblems
A recursive solution contains a
“small” number of distinct
subproblems repeated many times.

/

The number of distinct LCS subproblems for
two strings of lengths 72 and » 1s only mn.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.24

= .« Memoization algorithm
Memoization: After computing a solution to a
subproblem, store it in a table. Subsequent calls

check the table to avoid redoing work.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.25

71 Memoization algorithm

< N
\\“ S

Memoization: After computing a solution to a
subproblem, store it in a table. Subsequent calls
check the table to avoid redoing work.

LCS(x, v, 1,)
if c[i, j] = NIL
then if x|i]| = y|/] A
then c[i, j] < LCS(x, y, i1, j-1)+ 1 | same
else c[i, j| < max {LCS(x, y, i-1,/), (%S
LCS(x, y, i,j—l)}J before

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.26

71 Memoization algorithm

< N
\\“

Memoization: After computing a solution to a
subproblem, store it in a table. Subsequent calls
check the table to avoid redoing work.

LCS(x, v, 1, /)
if c[i, j] = NIL
then if x|i]| = y|/] A
then c[i, j] < LCS(x, y, i1, j-1)+ 1 | same
else c[i, j| « maX{LCS(x, v, i—1,7)), >~ as
LCS(x, y, i,j—l)}J before

Time = ®(mn) = constant work per table entry.
Space = O(mn).

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.27

(Rl

IDEA:

Compute the
table bottom-up.

November 7, 2005

3
D
C
A
B

A

Yynamic-programming algorithm
A BCBDAB

0

0

0

0

0

0

oSO | O

O NO | OO OO

DO | D | DN | —

2
2
3
3

W | W I =

1
2
2
3
3
4

0
|
2
2
3
4
4

Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson

L15.28

~DYynamic-programming algorithm

IDEA: A B CB D A B
Compute the 0,0[{0,0]00
table bottom-up. B 4

C

A

B

A

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.29

namic-programming algorithm

MYV oy

IDEA: B C B A

Compute the 0/,0/0[0]0[0]O0
table bottom-up. Blololil1l1l111
Time = @(mn) 010 1111212
Reconstruct
. 212122
LCS by tracing 1919 4
backwards. 0 1121223
B| O 2121333
NG
AlO 21213134

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.30

- Yynamic-programming algorithm

Y i ;

IDEA: B C B A

Compute the 000
table bottom-up. B :

Time = O(mn).

Reconstruct C
LCS by tracing
backwards.

Space = O(mn). B
Exercise: A
O(min{m, n}).

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.31

ONO | OO

\

oclolocoloco|lo|lo|o
W W V| V||~ o

0
1
2
2
3
3
4

DO (D[[DN | — | —
W W (=

