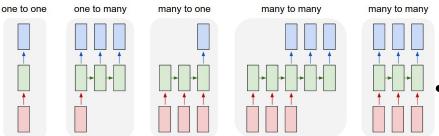
CS60020: Foundations of Algorithm Design and Machine Learning

Sourangshu Bhattacharya

Recurrent neural networks

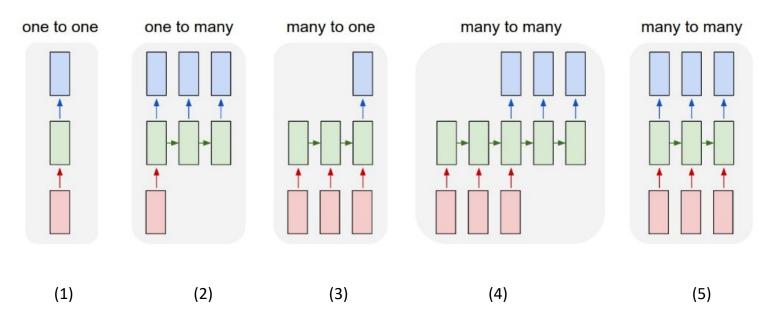
Recurrent neural networks

- Lots of information is sequential and requires a memory for successful processing
- Sequences as input, sequences as output



- Recurrent neural networks(RNNs) are called recurrent because they perform same task for every element of sequence, with output dependent on previous computations
- RNNs have memory that captures information about what has been computed so far
- RNNs can make use of information in arbitrarily long sequences – in practice they limited to looking back only few steps

Topologies of Recurrent Neural Network



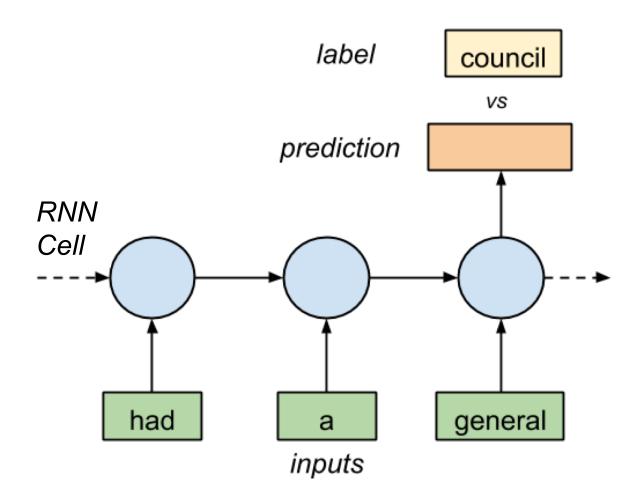
1) Common Neural Network (e.g. feed forward network)

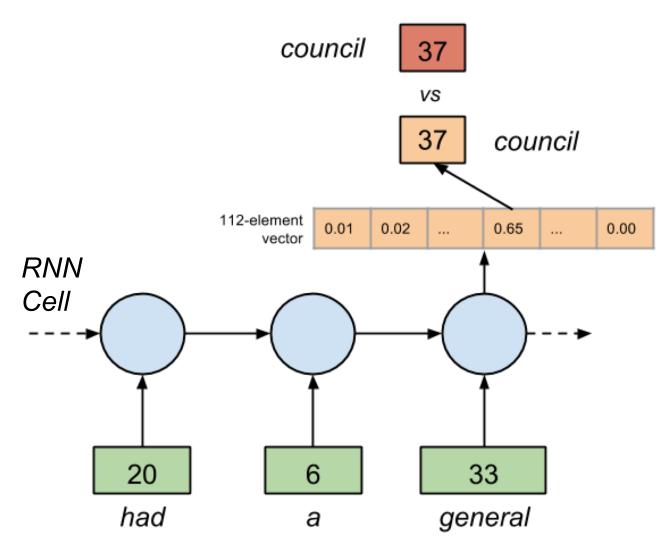
- 2) Prediction of future states base on single observation
- 3) Sentiment classification
- 4) Machine translation
- 5) Simultaneous interpretation

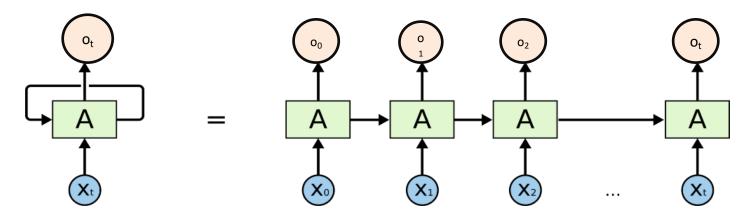
Language Model

• Compute the probability of a sentence

- Useful in machine translation
 - Word ordering: p(the cat is small) > p(small the cat is)
 - Word choice: p(walking home after school) > p(walking house after school)





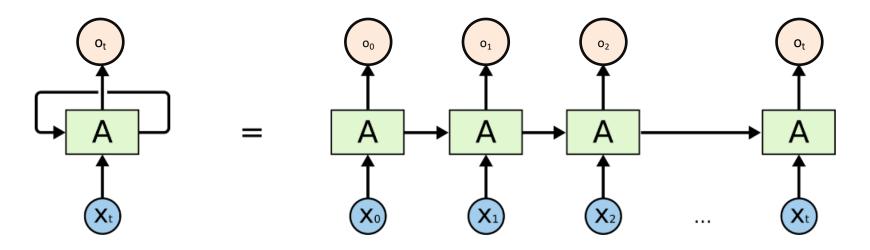


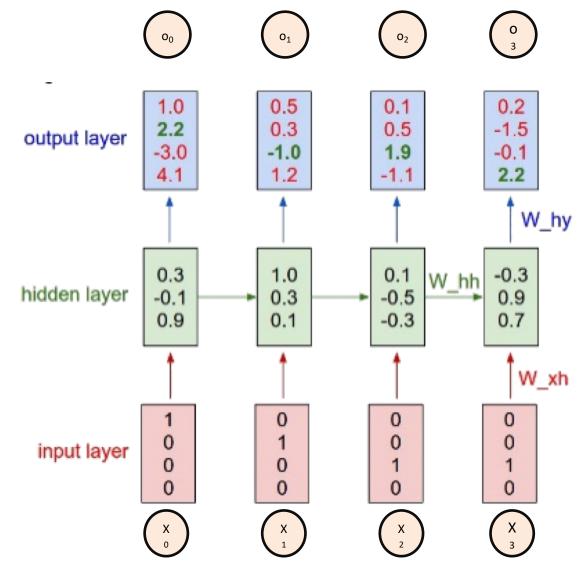
- Recurrent Neural Network have an internal state
- State is passed from input x_t to x_{t+1}

Img Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Language Models with RNN

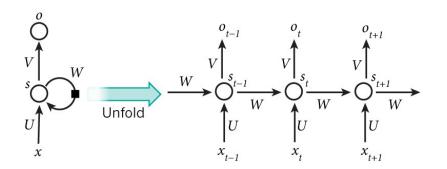
- Let $x_0, x_1, x_2...$ denote words (input)
- Let o₀, o₁, o₂... denote the probability of the sentence(output)
- Memory requirement scales nicely (linear with the number of word embeddings / number of character)





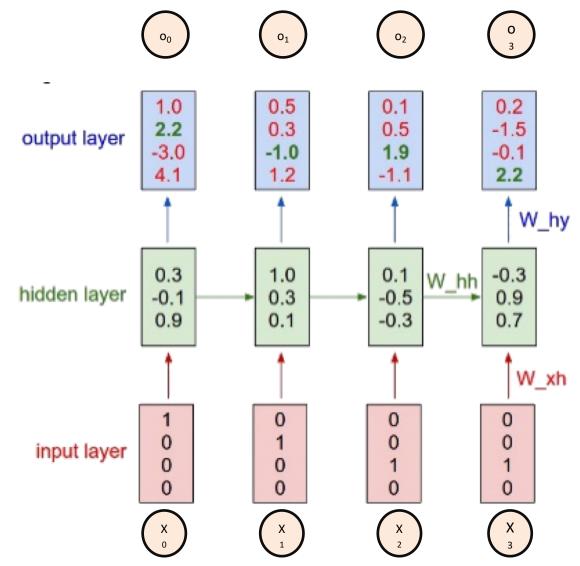
Recurrent neural networks

- RNN being unrolled (or unfolded) into full network
- Unrolling: write out network for complete sequence



• Image credits: Nature

RNN (Problem Revisited)



No Magic Involved (in Theory)

- You unroll your data in time
- You compute the gradients
- You use back propagation to train your network
- Karpathy presents a Python implementation for Char-RNN with 112 lines
- Training RNNs is hard:
 - Inputs from many time steps ago can modify output
 - Vanishing / Exploding Gradient Problem
- Vanishing gradients can be solved by Gated-RNNs like Long-Short-Term-Memory (LSTM) Models
 - LSTM became popular in NLP in 2015

Vanishing and exploding gradients

- For training RNNs, calculate gradients for U, V, W – ok for V but for W and U ...
- ► Gradients for *W*:

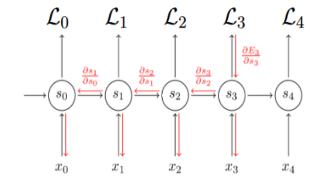
$$\frac{\partial \mathcal{L}_3}{\partial W} = \frac{\partial \mathcal{L}_3}{\partial o_3} \frac{\partial o_3}{\partial s_3} \frac{\partial s_3}{\partial W} = \sum_{k=0}^3 \frac{\partial \mathcal{L}_3}{\partial o_3} \frac{\partial o_3}{\partial s_3} \frac{\partial s_3}{\partial s_k} \frac{\partial s_k}{\partial W}$$

• More generally:
$$\frac{\partial \mathcal{L}}{\partial s_t} = \frac{\partial \mathcal{L}}{\partial s_m} \cdot \frac{\partial s_m}{\partial s_{m-1}} \cdot \frac{\partial s_{m-1}}{\partial s_{m-2}} \cdot \dots \cdot \frac{\partial s_{t+1}}{\partial s_t} \Rightarrow \ll 1$$

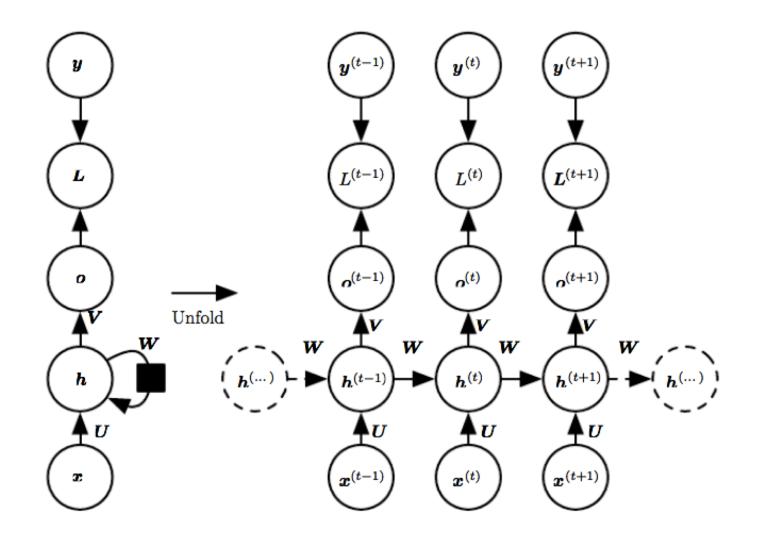
< 1 < 1 < 1

 Gradient contributions from far away steps become zero: state at those steps doesn't contribute to what you are learning

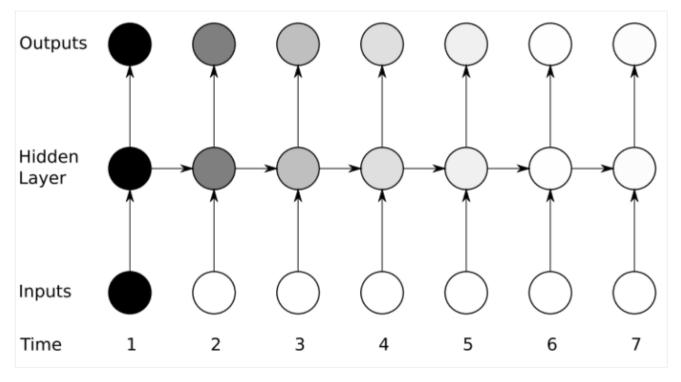
$$L_i$$
 – Loss, U, V, W – Parameters, S_i - states



Vanishing and exploding gradients



Vanishing and exploding gradients



Heatmap

Long Short Term Memory [Hochreiter and Schmidhuber, 1997]

LSTMs designed to combat vanishing gradients through gating mechanism

How LSTM calculates hidden state s_t

$$i = \sigma(x_t U^i + s_{t-1} W^i)$$

$$f = \sigma(x_t U^f + s_{t-1} W^f)$$

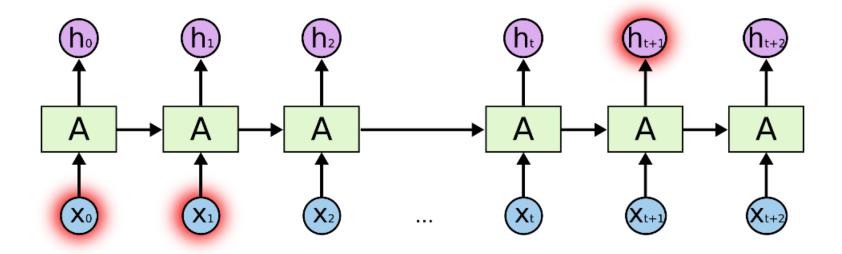
$$o = \sigma(x_t U^o + s_{t-1} W^o)$$

$$g = \tanh(x_t U^g + s_{t-1} W^g)$$

$$c_t = c_{t-1} \circ f + g \circ i$$

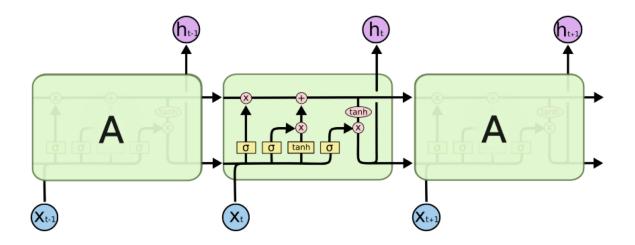
$$s_t = \tanh(c_t) \circ o$$

Long-Short-Term Memory (LSTM)



- Long-term dependencies: *I grew up in France and lived there until I was 18. Therefore I speak fluent ???*
- Presented (vanilla) RNN is unable to learn long term dependencies
 - Issue: More recent input data has higher influence on the output
- Long-Short-Term Memory (LSTM) models solves this problem

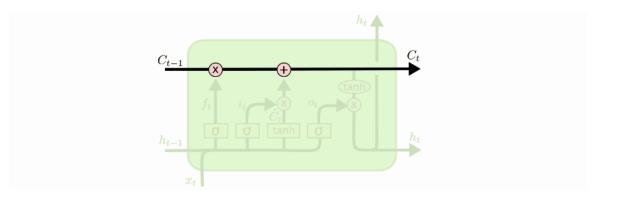
LSTM Model



- The LSTM model implements a *forget-gate* and an *add-gate*
- The models learns when to forget something and when to update internal storage

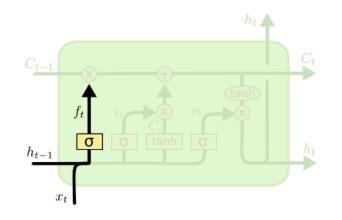
Img Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTM Model



- Core: Cell-state *C* (a vector of certain size)
- The model has the ability to remove or add information using Gates

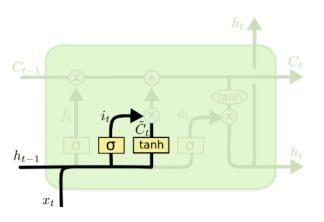
Forget-Gate



 $f_t = \sigma \left(W_f \cdot [h_{t-1}, x_t] + b_f \right)$

- Sigmoid function σ output a value between 0 and 1
- The output is point-wise multiplied with the cell state C_{t-1}
- Interpretation:
 - 0: Let nothing through
 - 1: Let everything through
- Example: When we see a new subject, forget gender of old subject

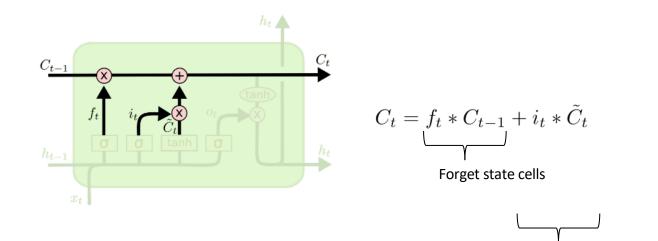
Set-Gate



$$i_t = \sigma \left(W_i \cdot [h_{t-1}, x_t] + b_i \right)$$
$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

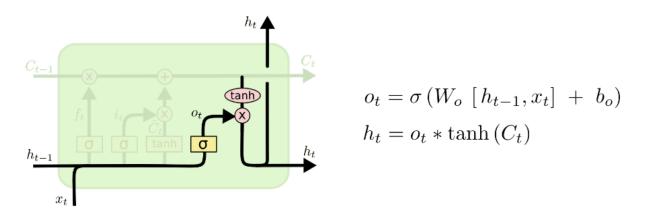
- Compute *i_t* which cells we want to update and to which degree (σ: 0 ... 1)
- Compute the new cell value using the *tanh* function

Update Internal Cell State



Update state cells

Compute Output h_t

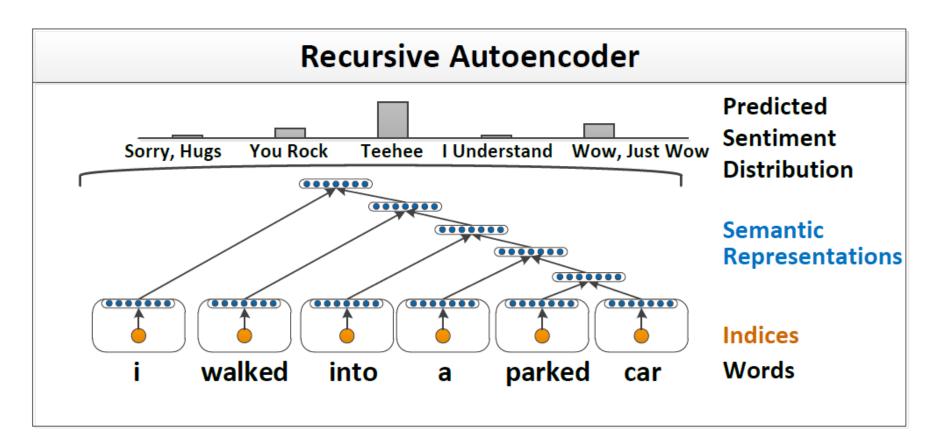


- We use the updated cell state C_t to compute the output
- We might not need the complete cell state as output
 - Compute o_t , defining how relevant each cell is for the output
 - Pointwise multiply o_t with tanh(C_t)
- Cell state C_t and output h_t is passed to the next time step

Recursive Neural Networks

- Socher et al., 2011, Semi-supervised recursive autoencoders for predicting sentiment distributions
- Socher et al., 2013, Recursive Deep Models for Semantic Compositionality over a Sentiment Treebank

Recursive Autoencoders



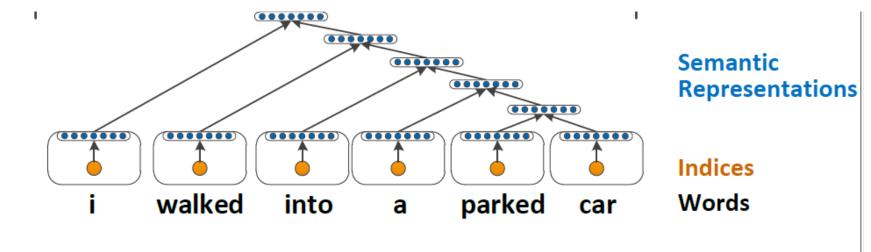
- In a first step, words are mapped to dense vectors (word embeddings)
- Iteratively they are combined and reduced to form a single compact representation of the sentence

Recursive Autoencoders (RAE)

- Given two embeddings x_1, x_2 each with length *n*
- The autoencoder takes $[x_1; x_2]$ as input and maps it to a hidden layer of size *n*:

$$y_1 = f(W[x_1; x_2] + b)$$

 The function is repeatedly applied for the whole sentence until we receive a single vector of size n, representing the semantic of this sentence



Selecting the nodes that should be combined

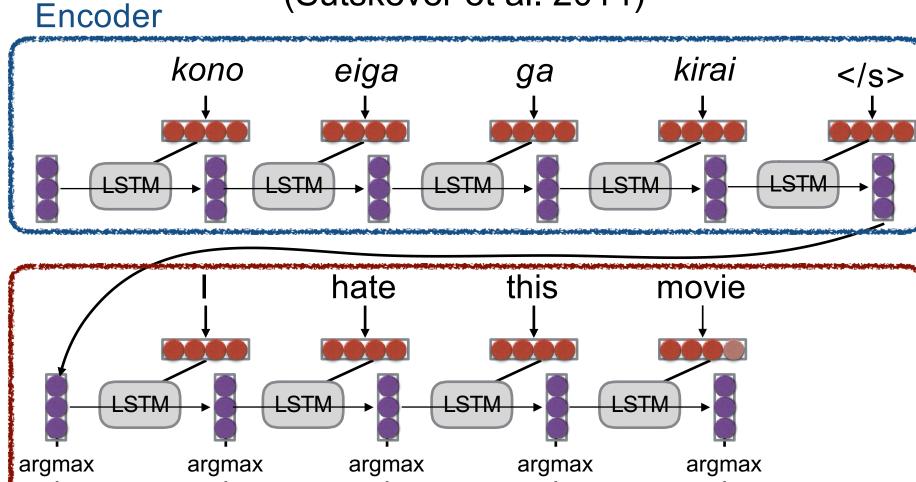
- The previous slides showed a joining of the vectors from right to left
- However, we can define any tree structure for the combination of two vectors, for example a parse tree
- Socher et al. present a greedy approach for the combination of vectors
 - Compute the reconstruction error for all neighboring vectors.
 - The two neighbors with the lowest error are selected and their nodes are replaced by the compressed representation.
 - Repeat the previous two steps until we end up with a single vector representing the semantics of the sentence
- A different, more recent approach, is to use parse trees
- The output of the recursive autoencoder can be used for a classification task by adding a final softmax layer:

 $o = softmax(W^{label}y_m)$

Machine translation

02.09.2014 | Computer Science Department | UKP Lab - Prof. Dr. Iryna Gurevych | Nils Reimers |

Encoder-decoder Models (Sutskever et al. 2014)



movie

this

</s>

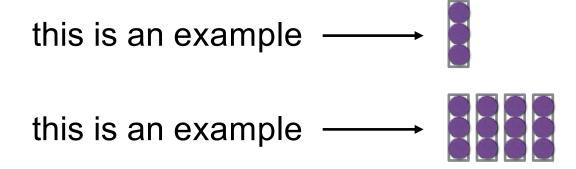
Decoder

hate

Sentence Representations Problem!

"You can't cram the meaning of a whole %&!\$ing sentence into a single \$&!*ing vector!" — Ray Mooney

 But what if we could use multiple vectors, based on the length of the sentence.

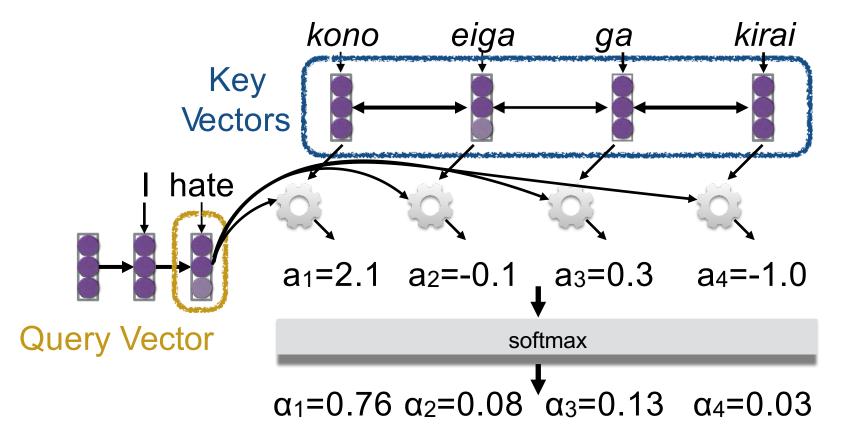


Attention - Basic Idea (Bahdanau et al. 2015)

- Encode each word in the sentence into a vector
- When decoding, perform a linear combination of these vectors, weighted by "attention weights"
- Use this combination in picking the next word

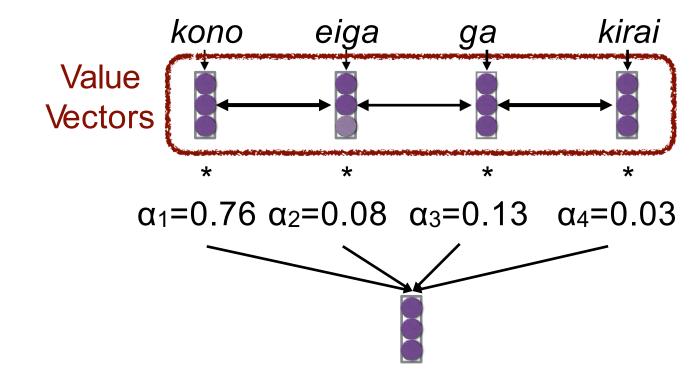
Calculating Attention (1)

- Use "query" vector (decoder state) and "key" vectors (all encoder states)
- For each query-key pair, calculate weight
- Normalize to add to one using softmax



Calculating Attention (2)

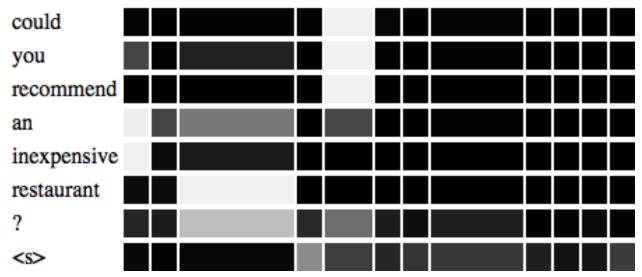
 Combine together value vectors (usually encoder states, like key vectors) by taking the weighted sum



• Use this in any part of the model you like

A Graphical Example

安いレストランを紹介していただけますか。



Attention Score Functions (1)

- **q** is the query and **k** is the key
- Multi-layer Perceptron (Bahdanau et al. 2015)

 $a(\boldsymbol{q}, \boldsymbol{k}) = \boldsymbol{w}_2^{\mathsf{T}} \operatorname{tanh}(W_1[\boldsymbol{q}; \boldsymbol{k}])$

- Flexible, often very good with large data
- **Bilinear** (Luong et al. 2015)

 $a(\boldsymbol{q},\boldsymbol{k}) = \boldsymbol{q}^{\mathsf{T}} W \boldsymbol{k}$

Attention Score Functions (2)

• Dot Product (Luong et al. 2015)

$$a(\boldsymbol{q},\boldsymbol{k}) = \boldsymbol{q}^{\intercal}\boldsymbol{k}$$

- No parameters! But requires sizes to be the same.
- Scaled Dot Product (Vaswani et al. 2017)
 - Problem: scale of dot product increases as dimensions get larger
 - Fix: scale by size of the vector

$$a(\boldsymbol{q},\boldsymbol{k}) = \frac{\boldsymbol{q}^{\intercal}\boldsymbol{k}}{\sqrt{|\boldsymbol{k}|}}$$

References

- Deep Learning for NLP <u>Nils Reimers</u>. <u>https://github.com/UKPLab/deeplearning4nlp-</u> <u>tutorial/tree/master/2017-07_Seminar</u>
- <u>CS231n: Convolutional Neural Networks for Visual</u> <u>Recognition</u>. <u>Andrej Karpathy</u> <u>http://cs231n.github.io/convolutional-networks/</u>
- <u>http://karpathy.github.io/2015/05/21/rnn-effectiveness/</u>
- Neural Networks for Information Retrieval. SIGIR 2017 Tutorial <u>http://nn4ir.com/</u>
- CSE 446 Machine Learning Spring 2015, University of Washington. <u>Pedro Domingos</u>. <u>https://courses.cs.washington.edu/courses/cse446/15sp/</u>