CS60020: Foundations of
Algorithm Design and Machine
Learning

Special Types of Trees

* Def: Full binary tree = a (4,
binary tree in which each © 3
node is either a leaf or has OEROIONE®
degree exactly 2. DEOION®

Full binary tree
(4)

* Def: Complete binary tree (D (3

= a binary tree in which all @ e W

leaves are on the same level
and all internal nodes have
degree 2.

Complete binary tree

Definitions

* Height of a node = the number of edges on the longest simple
path from the node down to a leaf

* Level of a node = the length of a path from the root to the
node

* Height of tree = height of root node

e «— Height of root = 3

(1) (3)
Heightof (2)=1 —— (5} (16) (9) (10) «—— Level of (10)=2
W @

Useful Properties

- There are at most 2’ nodes at level (or depth) / of a binary tree
- A binary tree with height ¢ has at most 27™' — 1 nodes

- A binary tree with » nodes has height at least| /gn |
(see Ex 6.1-2, page 129)

2

The Heap Data Structure

* Def: A heap is a nearly complete binary tree
with the following two properties:

— Structural property: all levels are full, except
possibly the last one, which is filled from left to
right

— Order (heaproperty:Ffr%%amé ﬂgéjpepﬁ‘operty, i+
Parent(x) > x follows that:

“The root is the maximum
element of the heap!”

Heap

A heap is a binary tree that is filled in order

Array Representation of Heaps

* A heap can be stored as an array

A.

— Root of tree is A[1]

— Left child of A[i] = A[2i]

— Right child of A[i] = A[2i + 1]
— Parentof A[i]= A[Li/2]]

— Heapsize[A] < length[A]

* The elements in the subarray

A[(Ln/2]+1) .. n] are leaves

Heap Types

 Max-heaps (largest element at root), have the
max-heap property:
— for all nodes 1, excluding the root:

A[PARENT(i)] > A[i]

* Min-heaps (smallest element at root), have
the min-heap property:

— for all nodes 1, excluding the root:
ATDADENIT/:\N1., AT:1

Adding/Deleting Nodes

* New nodes are always inserted at the bottom
level (left to right)

* Nodes are removed from the bottom level

(right =
\ 50)
N
/'_'“'\:'I___ _/_,:; l
24 | |
x; ___1,; "\3_?/
NS ~
L 20 2 '- ! 3
\D J x._T_! k_l_S_f' J
/ / \\\
AN D) D
(12 | '. |
R_l_-?/ll N~ N

Operations on Heaps
Maintain/Restore the max-heap property
— MAX-HEAPIFY

Create a max-heap from an unordered array

— BUILD-MAX-HEAP

Sort an array in place
— HEAPSORT

Priority queues

Maintaining the Heap Property

 Suppose a nhode is smaller than a child
— Left and Right subtrees of i are max-heaps

e To eliminate the violation:
— Exchange with larger child
— Move down the tree

— Continue until node is not smaller than
children

MAX-HEAPIFY(A, 2, 10)
1

Example

Heap property restored

11

Maintaining the Heap Property

e Assumptions: Alg: MAX-HEAPIFY(A, i, n)

1. | LEFT(j)

2. r < RIGHT(i)

if | < nand A[l] > A[i]
then largest |
else largest i

if r < nand A[r] > A[largest]
then largest «r

if largest = i
then exchange A[i] A[largest]

10. MAX-HEAPIFY(A, largest, n)

— Left and Right
subtrees of |
are max-heaps

— A[i] may be
smaller than

© 0N OA®

12

MAX-HEAPIFY Running Time

* Intuitively:

- It traces a path from the root to a leaf (longest path length: h)
- At each level, 1t makes exactly 2 comparisons

- Total number of comnarisons is 2h

- Running time 1s o(h) or O(/gn)

* Running time of MAX-HEAPIFY is O(Ign)

* Can be written in terms of the height of the
heap, as being O(h)

— Since the height of the heap is |_|gnJ

Building a Heap

 Convertanarray A[1 ... n]into a max-heap (n = length[A])

* The elements in the subarray A[(Ln/2]+1) .. n] are leaves
* Apply MAX-HEAPIFY on elements between 1 and | n/2

Al: BUILD-MAX-HEAP(A)

1. n=length[A]

2. fori < | n/2]downto 1

3. do MAX-HEAPIFY(A, i, n)

10

14

Example:

A

16

10

14

15

Running Time of BUILD MAX HEAP
Alz: BUILD-MAX-HEAP(A)

1. n=length[A]
2. fori«— | n/2/downto 1

O(n)
3. do MAX-HEAPIFY(A,i,n) O(lgn)

= Running time: O(nlgn)

e This is not an asymptotically tight upper

bound

16

Running Time of BUILD MAX HEAP

« HEAPIFY takes O(h) = the cost of HEAPIFY on a node i is
proportional to the height of the node | in the tree

= T(n)= anhl Zz =O0(n)

Height LeveI No. of nodes
ho=3 (|_IgnJ) i=0 20
) . g

hy=2 i=1 21
Vo —

W o8
dbdbdbdb =3 (gn)) 2

h,=h—i height of the heap rooted at level i
n,=2 number of nodes at level i

17

Running Time of BUILD MAX HEAP

T'(n)= Zh:nihi

i=0

I
x4
=
|
=

Cost of HEAPIFY at level i * number of nodes at that level

Replace the values of n; and h; computed before

Multiply by 2" both at the nominator and denominator and
1

2—i

write 2/ as

Change variables: k=h - i

The sum above is smaller than the sum of all elements to o
and h =Ign

The sum above is smaller than 2

Running time of BUILD-MAX-HEAP: T(n) = O(n)

Heapsort

e Goal:
— Sort an array using heap representations (D
(4) (3)
¢ Idea: n e

— Build a max-heap from the array

— Swap the root (the maximum element) with the

last element in the array
— “Discard” this last node by decreasing the heap
Size

— Call MAX-HEAPIFY on the new root

Example: A=[7,4,6 3,1, 2]

#%° o ® 0% °

MAX-HEAPIFY(A, 1, 4) MAX-HEAPIFY(A, 1, 3) MAX-HEAPIFY(A, 1, 2)

@/@@ 0 © [
® O O,

MAX-HEAPIFY(A, 1, 1)

20

S N

Alg: HEAPSORT(A)

BUILD-MAX-HEAP(A)
for i — length[A] downto 2
do exchange A[1] A[i]
MAX-HEAPIFY(A, 1,i-1)

Running time: O(nlgn) --- Can
be shown to be O(nlgn)

O(n)

>Nn-1times

O(lgn)

Priority Queues

Properties
- Each element 1s associated with a value (priority)

- The key with the highest (or lowest) priority 1s extracted first

Operations
on Priority Queues
* Max-priority queues support the following

operations:

— INSERT(S, x): inserts element X into set S

— EXTRACT-MAX(S): removes and returns element

of S with largest key

— MAXIMUM(S): returns element of S with largest

key

— INCREASE-KEY(S, x, kJiincreases value of

HEAP-MAXIMUM

Goal:

— Return the largest element of the

heap
Running time: O(1)

ﬂl;q HEAP- MI_,IA\XHXIUIVI(A\
1. return A[le]a

Heap-Maximum(A) returns 7

HEAP-EXTRACT-MAX

Goal:

— Extract the largest element of the heap (i.e., return the max value
and also remove that element from the heap

ldea:
— Exchange the root element with the last
— Decrease the size of the heap by 1 element

— Call MAX-HEAPIFY on the new root, on a heap of size n-1

Heap A: /@\ Root is the largest element

Example: Heap-exTRACT-MAX

max = 16 (14) (10

Heap size decreased with 1

(19

(8) 10)

26

Call MAX-HEAPIFY(A, 1, n-1)

HEAP-EXTRACT-MAX

Alg: HEAP-EXTRACT-MAX(A, n)

1. ifn<1

2. then error “heap underflow”

3. max «— A[l]
4. A[l] < A[n]
5. MAX-HEAPIFY(A, 1, n-1) rem%kes heap

6. return max
Running time: O(Ign)

HEAP-INCREASE-KEY

* Goal:
— Increases the key of an element i in the heap

e |dea:

— Increment the key of A[i] to its new value

— |If the max-heap property does not hold anymore:
traverse a path toward the root to find the proper
place for the newly incr ed key

Example: HeaP-INCREASE-KEY

29

HEAP-INCREASE-KEY

Alg: HEAP-INCREASE-KEY(A, i, key)

if key < A[i]
then error “new key is smaller than current key”
Ali] — key
while i > 1 and A[PARENT(i)] < A[i]
do exchange A[i] A[PARENT(i)]
| — PARENT(i)

A Al

Running time: O(Ign)

Key [i] ¢ 15

MAX-HEAP-INSERT

* Goal:
(16
— Inserts a new element into a
max-heap 1 19
8) @M@ &
* |dea: 2) WO
— Expand the max-heap with a 16
new element whose key is -0 13 10
— Calls HEAP-INCREASE-KEY toset (8 (D) (&
2 WO W

the key of the new node to its
correct value and maintain the
max-heap property

Example: max-HEAP-INSERT

Insert value 15: Increase the key to 15
- Start by inserting -0 Call HEAP-INCREASE-KEY on A[11] = 15
The restored heap containing

(16
(14) 10
(8) M) &
2 WO
the newly added element
19 (16
12) 10 (15) 10
G O®GC 6 (8) W@ &
@D WO @ 2 WO @

(16)
(19 10)
OO0 O
@D WL @

MAX-HEAP-INSERT

Alg: MAX-HEAP-INSERT(A, key, n)
14 10
1. heap-size[A] < n+1 OBROIOSRO
ONOIONS

2. Aln+1]« -
3. HEAP-INCREASE-KEY(A, n + 1, key)

Running time: O(lgn)

Summary

 We can perform the following operations on

heaps:

— MAX-HEAPIFY O(Ign)

— BUILD-MAX-HEAP O(n)
— HEAP-SORT O(nlgn)
— MAX-HEAP-INSERT O(lgn)
— HEAP-EXTRACT-MAX O(lgn)
— HEAP-INCREASE-KEY O(lgn)

~ Average
O(Ign)

Priority Queue Using Linked List

Remove a key: O(1))

Insert a kev: O(n)
' > Average: O(n)

Increase key: O(n)

Extract max key: O(1) /

