
CS60020: Foundations of
Algorithm Design and Machine

Learning
Sourangshu Bhattacharya

Neural Network Basics

§ Given several inputs:
and several weights:
and a bias value:

§ A neuron produces a single output:

§ This sum is called the activation of the neuron
§ The function s is called the activation function

for the neuron
§ The weights and bias values are typically

initialized randomly and learned during training

McCulloch–Pitts “unit”

3

Output is a “squashed” linear function of the inputs:

Output

S

Input
Links

Activation
Function

Input
Function

Output
Links

a0 =-1 ai = g(ini)

ai

g
iniWj,i

W0,i

Bias Weight

aj

A gross oversimplification of real neurons, but its purpose is
to develop understanding of what networks of simple units can do

Activation functions

4

+1 +1

iniini

g(ini) g(ini)

(a) (b)

(a)is a step function or threshold function

(b)is a sigmoid function 1/(1 + e−x)
Changing the bias weight W0,i moves the threshold location

Feed forward example

Expressiveness of perceptrons

Feed Forward Neural Networks

Hidden-Layer
• The hidden layer (L2, L3) represent learned non-linear

combination of input data
• For solving the XOR problem, we need a hidden layer
– some neurons in the hidden layer will activate only for some combination of

input features
– the output layer can represent combination of the activations of the hidden

neurons

• Neural network with one hidden layer is a universal
approximator
– Every function can be modeled as a shallow feed forward network
– Not all functions can be represented efficiently with a single hidden layer

Þ we still need deep neural networks

Going from Shallow to Deep Neural Networks
• Neural Networks can have several hidden layers
• Initializing the weights randomly and training all

layers at once does hardly work
• Instead we train layerwise on unannotated data

(a.k.a. pre-training):
– Train the first hidden layer
– Fix the parameters for the first layer and train the

second layer.
– Fix the parameters for the first & second layer, train the

third layer

Img-Source: http://neuralnetworksanddeeplearning.com

• After the pre-training, train all layers using your annotated data
• The pre-training on your unannotated data creates a high-level

abstractions of the input data
• The final training with annotated data fine tunes all parameters in the

network

How to learn the weights
• Initialise the weights i.e. Wk,j Wj,i with random values
• With input entries we calculate the predicted output
• We compare the prediction with the true output
• The error is calculated
• The error needs to be sent as feedback for updating the weights

BACKPROPAGATION

Slides from Intel

How to Train a Neural Net?

Input
(Feature Vector)

Output
(Label)

• Put in Training inputs, get the output
• Compare output to correct answers: Look at loss function J
• Adjust and repeat!
• Backpropagation tells us how to make a single adjustment

using calculus.

How have we trained before?

• Gradient Descent!

1. Make prediction
2. Calculate Loss
3. Calculate gradient of the loss function w.r.t. parameters
4. Update parameters by taking a step in the opposite

direction
5. Iterate

How have we trained before?

• Gradient Descent!

1. Make prediction
2. Calculate Loss
3. Calculate gradient of the loss function w.r.t. parameters
4. Update parameters by taking a step in the opposite

direction
5. Iterate

!"

Feedforward Neural Network

#"

#$

#%
&

&

&

&

&

&

&

&
'!"

'!$

'!%

!$

!%

!"

Forward Propagation

#"

#$

#%
&

&

&

&

&

&

&

&
'!"

'!$

'!%

!$

!%

Pass in
Input

!"

Forward Propagation

#"

#$

#%
&

&

&

&

&

&

&

&
'!"

'!$

'!%

!$

!%

Calculate each Layer

!"

Forward Propagation

#"

#$

#%
&

&

&

&

&

&

&

&
'!"

'!$

'!%

!$

!%

Get Output

!"

Forward Propagation

#"

#$

#%
&

&

&

&

&

&

&

&
'!"

'!$

'!%

!$

!%

Evaluate:
(!), +!)

How have we trained before?

• Gradient Descent!

1. Make prediction
2. Calculate Loss
3. Calculate gradient of the loss function w.r.t. parameters
4. Update parameters by taking a step in the opposite

direction
5. Iterate

How to Train a Neural Net?

• How could we change the weights to make our Loss
Function lower?

• Think of neural net as a function F: X -> Y
• F is a complex computation involving many weights W_k
• Given the structure, the weights “define” the function F (and

therefore define our model)
• Loss Function is J(y,F(x))

How to Train a Neural Net?

• Get !"
!#$

for every weight in the network.

• This tells us what direction to adjust each Wk if we want to
lower our loss function.

• Make an adjustment and repeat!

!"

Feedforward Neural Network

#"

#$

#%
&

&

&

&

&

&

&

&
'!"

'!$

'!%

!$

!%

() !*, ,!*
(-.

-(") -($) -(%) Want:

Calculus to the Rescue

• Use calculus, chain rule, etc. etc.
• Functions are chosen to have “nice” derivatives
• Numerical issues to be considered

Punchline

!"
!#(%) = (() −)) ⋅ # , ⋅ -. /(,) ⋅ 0(%)

!"
!#(1) = () −) ⋅ # , ⋅ -. /(,) ⋅ # % ⋅ -. / % ⋅ 2

!"
!#(,) = (() −)) ⋅ 0(,)

• Recall that: -′ / = -(/)(1 − -(/))
• Though they appear complex, above are easy to compute!

!"

Backpropagation

#"

#$

#%
&

&

&

&

&

&

&

&
'!"

'!$

'!%

!$

!%

() !*, ,!*
(-.

-(") -($) -(%) Want:

!"

Backpropagation

#"

#$

#%
&

&

&

&

&

&

&

&
'!"

'!$

'!%

!$

!%

((") (($) +, !-, /!-
+(%

!"

Backpropagation

#"

#$

#%
&

&

&

&

&

&

&

&
'!"

'!$

'!%

!$

!%

() !*, ,!*
(-%

() !*, ,!*
(-$

-(")

!"

Backpropagation

#"

#$

#%
&

&

&

&

&

&

&

&
'!"

'!$

'!%

!$

!%

() !*, ,!*
(-%

() !*, ,!*
(-$

() !*, ,!*
(-"

How have we trained before?

• Gradient Descent!

1. Make prediction
2. Calculate Loss
3. Calculate gradient of the loss function w.r.t. parameters
4. Update parameters by taking a step in the opposite

direction
5. Iterate

Vanishing Gradients

!"
!#(%) = () −) ⋅ # , ⋅ -. /(,) ⋅ # 0 ⋅ -. / 0 ⋅ 1

• Remember: -′ / = - / 1 − - / ≤ .25
• As we have more layers, the gradient gets very small at the

early layers.
• This is known as the “vanishing gradient” problem.
• For this reason, other activations (such as ReLU) have

become more common.

Recall that:

Computation Graphs

AUTOENCODERS

Autoencoders

Autoencoders
§ Unsupervised Learning Algorithm

§ Given an input x, we learn a compressed
representation of the input, which we then try to

reconstruct

§ In the simpliest form: Feed forward network with

hidden size < input size.

§ We then search for parameters such that:

for all training examples

§ The error function is:

§ Once we finished training, we are interested in

the compressed representation, i.e. the values of

the hidden units

Source: http://ufldl.stanford.edu/wiki/index.php/Autoencoders_and_Sparsity

Why would we use autoencoders?

• How does a
randomly
generated image
look like?

02.09.2014 | Computer Science Department | UKP
Lab - Prof. Dr. Iryna Gurevych | Nils Reimers |

Why would we use autoencoders?

• What would be the
probability to get
an image like this
from random
sampling?

Why would we use autoencoders?
• Produce a compressed representation of a high-

dimensional input (for example images)
• The compression is lossy. Learning drives the encoder to

be a good compression in particular for training examples
• For random input, the reconstruction error will be high
• The autoencoder learns to abstract properties from the

input. What defines a natural image? Color gradients,
straight lines, edges etc.

• The abstract representation of the input can make a
further classification task much easier

Dimension-Reduction can simplify
classifcation tasks – MNIST Task

Dimension-Reduction can simplify
classifcation tasks – MNIST Task

• Histogram-plot of test error on the MNIST hand written digit
recognition.

• Comparison of neural network with and without pretraining
Source: Erhan et al, 2010, Why Does Unsupervised Pre-training Help Deep Learning?

Autoencoders vs. PCA
• Principal component analysis (PCA) converts a set of correlated variables to

a set of linearly uncorrelated variables called principal components
• PCA is a standard method to break down high-dimensional vector spaces,

e.g. for information extraction or visualization
• However, PCA can only capture linear correlations

PCA

Encoder:
!" # = %#

Decoder:
&" ' = %('

Autoencoders

Encoder:

Decoder:

Autoencoders vs. PCA - Example

LSA
Deep Autoencoder

§ Articles from Reuter corpus were mapped to a 2000 dimensional vector, using the 2000 most
common word stems

Source: Hinton et al., Reducing the Dimensionality of Data with Neural Networks

How to ensure the encodes does not
learn the identity function?

Identify Function
• Learning the identity function

would not be helpful
• Different approaches to

ensure this:
– Bottleneck constraint: The

hidden layer is (much) smaller
than the input layer

– Sparse coding: Forcing many
hidden units to be zero or
near zero

– Denoising encoder: Add
randomness to the input
and/or the hidden values

Denoising Encoder
§ Create some random noise
§ Compute
§ Reconstruction Error:

§ Alternatively: Set some of the
neurons (e.g. 50%) to zero

§ The noise forces the hidden layer
to learn more robust features

Stacking Autoencoders

• We can stack multiple hidden layers to create a deep autoencoder
• These are especially suitable for highly non-linear tasks
• The layers are trained layer-wise – one at a time

Step 1: Train single layer autoencoder until convergence

Stacking Autoencoders

Step 2: Add additional hidden layer and train this layer by trying to reconstruct
the output of the previous hidden layer. Previous layers are will not be

changed. Error function: .

Stacking Autoencoders – Fine-tuning

• After pretraining all hidden layers, the deep
autoencoder is fine-tunedUnsupervised Fine-Tuning:

§ Apply back propagation to the
complete deep autoencoder

§ Error-Function:

§ Further details, see Hinton et al.
§ (It appears that supervised fine-

tuning is more common nowadays)

Supervised Fine-Tuning:
§ Use your classification task to fine-

tune your autoencoders
§ A softmax-layer is added after the

last hidden layer
§ Weights are tuned by using back

prograpagtion.
§ See next slides for an example or

http://ufldl.stanford.
edu/wiki/index.php/Stacked_Autoe
ncoders

http://ufldl.stanford.edu/wiki/index.php/Stacked_Autoencoders

Stacking Autoencoders - Example

Pretrain first autoencoder
§ Train an autoencoder to get the first

weight matrix and first bias
vector

§ The second weight matrix,
connecting the hidden and the
output units, will be disregarded
after the first pretraining step

§ Stop after a certain number of
iterations

Source: http://ufldl.stanford. edu/wiki/

Stacking Autoencoders - Example

Pretrain second autoencoder
§ Use the values of the previous

hidden units as input for the next
autoencoder.

§ Train as before

Source: http://ufldl.stanford. edu/wiki/

Stacking Autoencoders - Example

Pretrain softmax layer
§ After second pretraining finishes, add

a softmax layer for your classification
task

§ Pretrain this layer using back
propagation

Source: http://ufldl.stanford. edu/wiki/

Stacking Autoencoders - Example

Fine-tuning
§ Plug all layers together
§ Compute the costs based on the

actual input
§ Update all weights using

backpropagation

Source: http://ufldl.stanford. edu/wiki/

Is pre-training really necessary?
• Xavier Glorot and Yoshua Bengio, 2010,

Understanding the difficulty of training deep
feedforward neural networks

• With the right activation function and
initialization, the importance of pre-training
decreases

Is pre-training really necessary?
• Pre-training achieves two things:

– It makes optimization easier
– It reduces overfitting

• Pre-training is not required to make optimization work, if you have enough
data
– Mainly due to a better understanding how initialization works

• Pre-training is still very effective on small datasets

– More information:
https://www.youtube.com/watch?v=vShMxxqtDDs

https://www.youtube.com/watch?v=vShMxxqtDDs

Dropout in Neural Networks

26.10.2015 | Computer Science Department | UKP Lab - Prof. Dr. Iryna Gurevych | Nils Reimers |

6
0

Inspired by Hinton
https://www.youtube.com/watch?v=vShMxxqtDDs

For details:
Srivastava, Hinton et al., 2014, Dropout: A Simple Way to Prevent Neural
Networks from Overtting

https://www.youtube.com/watch?v=vShMxxqtDDs

Ensemble Learning

26.10.2015 | Computer Science Department | UKP Lab - Prof. Dr. Iryna Gurevych | Nils Reimers |

6
1

§ Create many different models and combine them at test time to make
prediction

§ Averaging over different models is very effective against overfitting

§ Random Forest
§ A single decision trees is not very powerful
§ Creating hundreds of different trees and combine them

§ Random forests works really well
§ Several Kaggle competitions, e.g. Netflix, were won by random forests

Model Averaging with Neural Nets

26.10.2015 | Computer Science Department | UKP Lab - Prof. Dr. Iryna Gurevych | Nils Reimers |

6
2

§We would like to do massive model averaging
§ Average over 100, 1.000, 10.000 or 100.000 models

§Each net takes a long time to train
§ We don’t have enough time to learn so many models

§At test time, we don’t want to run lots of large neural nets

§We need something that is more efficient
§ Use dropouts!

Dropout

Img source: http://cs231n.github.io/

§ Each time present a training example, we dropout 50% of the hidden
units

§ With this, we randomly sample over 2H differentarchitectures
§ H: Number of hidden units

§ All architectures share the
same weights

26.10.2015 | Computer Science Department | UKP Lab - Prof. Dr. Iryna Gurevych | Nils Reimers |

6
3

http://cs231n.github.io/

Dropout

26.10.2015 | Computer Science Department | UKP Lab - Prof. Dr. Iryna Gurevych | Nils Reimers |

6
4

§With H hidden units, we sample from 2H different models
§ Only few of the models get ever trained and they only get 1 training

example

§Sharing of weights means that every model is strongly
regularized
§ Much better than L1 and L2 regularization, which pulls weights towards

zero
§ It pulls weights towards what other models need
§ Weights are pulled towards sensible values

§This works in experiments extremely well

Dropout – at test time

26.10.2015 | Computer Science Department | UKP Lab - Prof. Dr. Iryna Gurevych | Nils Reimers |

6
5

§ We could sample many different architectures and average the output
§ This would be way too slow

§ Instead: Use all hidden units and half their outgoing weights
§ Computes the geometric mean of the prediction of all 2H models
§ We can use other dropout rates than p=0.5. At test time, multiply weights by 1-p

§ Using this trick, we train and use trillions of “different” models

§ For the input layer:
§ We could apply dropout also to the input layer
§ The probability should be then smaller than 0.5
§ This is known as denoising autoencoder
§ Currently this cannot be implemented in out-of-the-box Keras

How well does dropout work?

Source: Srivastava et al, 2014, Drouput A Simple Way to Prevent Neural Networks from Overtting
26.10.2015 | Computer Science Department | UKP Lab - Prof. Dr. Iryna Gurevych | Nils Reimers |

6
6

Classification error on MNIST dataset

How well does dropout work?

§If your deep neural network is significantly
overfitting, dropout will reduce the number of errors
a lot

§If your deep neural network is not overfitting, you
should be using a bigger one
§Our brain: #parameters >> #experiences
§Synapses are much cheaper then experiences

26.10.2015 | Computer Science Department | UKP Lab - Prof. Dr. Iryna Gurevych | Nils Reimers |

6
7

Another way to think about Dropout

26.10.2015 | Computer Science Department | UKP Lab - Prof. Dr. Iryna Gurevych | Nils Reimers |

6
8

§ In a fully connected neural network, a hidden unit knows
which other hidden units are present
§ The hidden unit co-adapt with them for the training data

§ But big, complex conspiracies are not robust -> they fail at test time

§ In the dropout scenario, each unit has to work with different
sets of co-workers
§ It is likely that the hidden unit does something individually useful

§ It still tries to be different from its co-workers

