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Neural Network Basics

= Given several inputs: z
and several weights:
and a bias value:

To output

T1,T2.T3,... € R
w1, Wa2, W3, ._.}y.g
belR

= A neuron produces a single output:
01 = s()_, wiz; + b)

Zi w;x; +b
= This sum is called the activation of the neuron

= The function s is called the activation function
for the neuron

= The weights and bias values are typically
initialized randomly and learned during training



McCulloch-Pitts “unit”

Output is a “squashed’ linear function of the nputs:

a; — glin;) = g | TU
BlasWelght
ao=-1 a;=g(in;)
a]— .D ‘

Input Input Activation Output Output
Links Functlon Function utpu Links

A gross oversimplification of real neurons, but its purpose is
to develop understanding of what networks of simple units can do



Activation functions

4 &lin)
Hf
(a) (b)

(a)is a step function or threshold function
(b)is a sigmoid function 1/(1 +¢e™)
Changing the bias weight /7 ; moves the threshold location



Feed forward example

w;

1.3

Feed-forward network = a parameterized family of nonlinear functions:

as = g(W35-a3+ Wys-ay)
= g(Ws5-gWis-a1+Wys-ag) +Wys-g(Wi4-a1+Wyy-ag))

Adjusting weights changes the function: do learning this way!



Expressiveness of perceptrons

Consider a perceptron with g = step function (Rosenblatt, 1957, 1960)
Can represent AND, OR, NOT, majority, etc., but not XOR
Represents a linear separator in input space:

NiWz; >0 or W-x>0

X X
1 o 1 O
?
0 0
0 1 X 0 1 X
(a) x; and x, (b) x; or; X5 (c) xq xor x,

Minsky & Papert (1969) pricked the neural network balloon



Feed Forward Neural Networks

Layers are usually fully connected:;
numbers of hidden units typically chosen by hand

Output units a;

Hidden units a

Input units aj




Hidden-Layer

* The hidden layer (L,, L) represent learned non-linear
combination of input data

* For solving the XOR problem, we need a hidden layer

— some neurons in the hidden layer will activate only for some combination of
input features

— the output layer can represent combination of the activations of the hidden
neurons
* Neural network with one hidden layer is a universal
approximator

— Every function can be modeled as a shallow feed forward network

— Not all functions can be represented efficiently with a single hidden layer
= we still need deep neural networks



Going from Shallow to Deep Neural Networks

* Neural Networks can have several hidden layers

* Initializing the weights randomly and training all
layers at once does hardly work

° Instead we train IayerW|Se on unannotated data Img-Source: http://neuralnetworksanddeeplearning.com
(a.k.a. pre-training):
— Train the first hidden layer

— Fix the parameters for the first layer and train the
second layer.

input layer

— Fix the parameters for the first & second layer, train the
third layer

» After the pre-training, train all layers using your annotated data

* The pre-training on your unannotated data creates a high-level
abstractions of the input data

* The final training with annotated data fine tunes all parameters in the
network



How to learn the weights

Initialise the weights i.e. W, ; W,; with random values

With input entries we calculate the predicted output

We compare the prediction with the true output

The error is calculated

The error needs to be sent as feedback for updating the weights

Layers are usually fully connected;
numbers of hidden units typically chosen by hand

Output units a;
Wi
Hidden units a

Input units ay



BACKPROPAGATION



How to Train a Neural Net?

Input

(Feature Vector)

Output
(Label)

« Putin Training inputs, get the output

« Compare output to correct answers: Look at loss function J

* Adjust and repeat!

* Backpropagation tells us how to make a single adjustment
using calculus.



How have we trained before?

e QGradient Descent!

Make prediction

Calculate Loss

Calculate gradient of the loss function w.r.t. parameters
Update parameters by taking a step in the opposite
direction

S. lterate

==



How have we trained before?

e QGradient Descent!

Make prediction

Calculate Loss

Calculate gradient of the loss function w.r.t. parameters
Update parameters by taking a step in the opposite
direction

S. lterate

=W =



Feedforward Neural Network
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Forward Propagation
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Forward Propagation
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How have we trained before?

e QGradient Descent!

Make prediction

Calculate Loss

Calculate gradient of the loss function w.r.t. parameters
Update parameters by taking a step in the opposite
direction

S. lterate

=W =



How to Train a Neural Net?

* How could we change the weights to make our Loss
Function lower?

e Think of neural net as a function F: X ->Y

« Fisacomplex computation involving many weights W_k

* Given the structure, the weights “define” the function F (and
therefore define our model)

* Loss Function is J(y,F(x))



How to Train a Neural Net?

0 : :
«  Get # for every weight in the network.
k

« This tells us what direction to adjust each W, if we want to
lower our loss function.

* Make an adjustment and repeat!



Feedforward Neural Network
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Calculus to the Rescue

 Use calculus, chain rule, etc. etc.
e Functions are chosen to have “nice” derivatives
e Numerical issues to be considered



Punchline

daJ .
aWszw_yy“®

0
aW](Z) = (5} —_ y) . W(3) . 0’(z(3)) . a(z)
dj

— (5 3) . /(03 2) . (2
aW(l)_(y_y).W().O'(Z()).W().O'(Z()).X

* Recall that: ¢'(2) =0(2)(1 — 0(2))

Though they appear complex, above are easy to compute!



Backpropagation
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Backpropagation
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Backpropagation
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How have we trained before?

e QGradient Descent!

Make prediction

Calculate Loss

Calculate gradient of the loss function w.r.t. parameters
Update parameters by taking a step in the opposite
direction

S. lterate

BN =



Vanishing Gradients

Recall that:

Jl
ow ()

— (5; — y) . W(B) . O-,(Z(B)) . W(z) . 0’(z(2)) - X

* Remember: ¢'(2) =0 (2)(1 —0(2)) < .25

* As we have more layers, the gradient gets very small at the
early layers.

* This is known as the “vanishing gradient” problem.

 For this reason, other activations (such as ReLU) have
become more common.



Window Classification

Example: Classify ‘Paris’ in the context of this sentence with window length 2:

museums in Paris are amazing
0000 0000 0000 0000 00O0OC
- T
Xwindow _[ Xmuseums Xin Xparis Xare Xamazing]

Resulting vector x,indow € R is a column vector.



Feed-forward computation

s=U"f(Wa b v e R¥Y W e R¥*U 7 e RRF!
s = Ula T
a = [f(z) eoo0 o000
> = Wax+b

Xwindow = [ Xmuseums  Xin Xparis Xare xamazing]



Maximum Margin Objective Function

ldea

Ensure that the score computed for “true” labeled data points is higher than
the score computed for “false” labeled data points.

@ s = score(museums in Paris are amazing)

@ 5. = score(Not all museums in Paris)



Maximum Margin Objective Function

Objective

Maximize (s — s.) or to minimize (s. — s). One possible objective function:
minimize J = max(s; — s,0)

What is the problem with this?

@ Does not attempt to create a margin of safety. We would want the “true”
labeled data point to score higher than the “false” labeled data point by
some positive margin A.

e We would want error to be calculated if (s —s. < A) and not just when
(s —se < 0). The modified objective:
minimize J = max(A + s¢ — s,0)




Maximum Margin Objective Function

e Objective for a single window: J = max(1 +s. —s,0)

@ Each window with a location at its center should have a score +1 higher
than any window without a named entity at its center.

o s=Ulf(Wx+b),s. = Uf(Wx.+b)
@ Assuming cost J is > (), compute the derivatives of s and s, with respect
to the involved variables: U, W, b, x



Training with backpropagation

Derivative of weight Wi;: J
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Derivative continued ...
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= U f'(z)

U T!‘ Lol e

Local error Local input
signal signal

where f'(z) = f(z)(1 — f(z)) for logistic f



From single weight Wj; to full W:

ds
— O;X;
aWU i
e We want all combinationsofi=1.2,...andj=1,2.3,...
@ Solution: Outer product
aJ
_ &X‘T

oW



Computation Graphs




AUTOENCODERS



Autoencoders

Autoencoders
= Unsupervised Learning Algorithm

= Given an input x, we learn a compressed
representation of the input, which we then try to
reconstruct

* |n the simpliest form: Feed forward network with
hidden size < input size.
= We then search for parameters such that:
TR
for all training examples

=  The error function is:

E(x,W,b) = ||z — z||2

= Once we finished training, we are interested in
the compressed representation, i.e. the values of Layer L,
the hidden units

Source: http://ufldl.stanford.edu/wiki/index.php/Autoencoders_and_Sparsity

LayerlL,

S

Layer L,

hy,b(X)



Why would we use autoencoders?

e How does a
randomly

generated image
look like?




Why would we use autoencoders?

* What would be the
probability to get
an image like this
from random
sampling?

02.09.2014 | Computer Science Department | UKP
Lab - Prof. Dr. Iryna Gurevych | Nils Reimers |



Why would we use autoencoders?

* Produce a compressed representation of a high-
dimensional input (for example images)

* The compression is lossy. Learning drives the encoder to
be a good compression in particular for training examples

* For random input, the reconstruction error will be high

 The autoencoder learns to abstract properties from the
input. What defines a natural image? Color gradients,
straight lines, edges etc.

 The abstract representation of the input can make a
further classification task much easier



Dimension-Reduction can simplify
classifcation tasks — MINIST Task

2.57
ol

1.51




Dimension-Reduction can simplify
classifcation tasks — MINIST Task

< 1 layer without pretraining
=+ 1 layer with pretraining

o _ ‘ - : < 4 layers without pretraining
& : : ) I ~ = 4 layers with pretraining
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test error

Histogram-plot of test error on the MNIST hand written digit
recognition.

Comparison of neural network with and without pretraining

Source: Erhan et al, 2010, Why Does Unsupervised Pre-training Help Deep Learning?

” i

test error



Autoencoders vs. PCA

* Principal component analysis (PCA) converts a set of correlated variables to
a set of linearly uncorrelated variables called principal components

« PCAis astandard method to break down high-dimensional vector spaces,
e.g. for information extraction or visualization

 However, PCA can only capture linear correlations

PCA Autoencoders
Encoder: Encoder:
fo(x) = Wx fo(x) =s(Wx+b).
Decoder: Decoder:
=W’
900 =W'y go (y) = s(W'y+b'),




Autoencoders vs. PCA - Example

= Articles from Reuter corpus were mapped to a 2000 dimensional vector, using the 2000 most
common word stems

European Community
Interbank markets monetary/economic

Disasters and
accidents

->’

Leading economic® = .p. ¥ k

. % N s '-; ) 2
& ot L -':-:“ Legal/judicial
indicators . g 4 oif U ’ﬁ :

3 .-l : ‘ A
.'%\'&. ) ‘.
. R M 7% Government
> LT
Accounts/ . % 5 borrowings
et eamings "f

Deep Autoencoder
Source: Hinton et al., Reducing the Dimensionality of Data with Neural Networks



How to ensure the encodes does not
learn the identity function?

Identify Function

Learning the identity function
would not be helpful

Different approaches to
ensure this:

— Bottleneck constraint: The
hidden layer is (much) smaller
than the input layer

— Sparse coding: Forcing many
hidden units to be zero or
near zero

— Denoising encoder: Add
randomness to the input
and/or the hidden values

Denoising Encoder

= Create some random noise ¢
= Compute 2 = f(z +¢)

= Reconstruction Error: 7 ~ z?

= Alternatively: Set some of the
neurons (e.g. 50%) to zero

= The noise forces the hidden layer
to learn more robust features




Stacking Autoencoders

 We can stack multiple hidden layers to create a deep autoencoder
* These are especially suitable for highly non-linear tasks
* The layers are trained layer-wise — one at a time

reconstruction

iInput
of input npd

features

Input

Step 1: Train single layer autoencoder until convergence




Stacking Autoencoders

reconstruction 000
of features

More abstract y ,

features

features

Input

Step 2: Add additional hidden layer and train this layer by trying to reconstruct
the output of the previous hidden layer. Previous layers are will not be

A1 — hal2

changed. Error function:



Stacking Autoencoders — Fine-tuning

o After pretrammg all hldden layers, the deep

i

i

Unsupervised Fme-Tunmg.

=  Apply back propagation to the
complete deep autoencoder

Error-Function:

E(xz, WO W@ )=z -zl

Further details, see Hinton et al.

= (It appears that supervised fine-
tuning is more common nowadays)

U |

Superwsed Fine-Tuning:

= Use your classification task to fine-
tune your autoencoders

A softmax-layer is added after the
last hidden layer

Weights are tuned by using back
prograpagtion.

See next slides for an example or
http://ufldl.stanford.
edu/wiki/index.php/Stacked Autoe
ncoders



http://ufldl.stanford.edu/wiki/index.php/Stacked_Autoencoders

Stacking Autoencoders - Example

Pretrain first autoencoder

= Train an autoencoder to get the first
weight matrix W and first bias
vector (1)

= The second weight matrix,
connecting the hidden and the
output units, will be disregarded
after the first pretraining step

= Stop after a certain number of
iterations

Input Features | Output

Source: http://ufldl.stanford. edu/wiki/



Stacking Autoencoders - Example

) G—%

Pretrain second autoencoder

=
NS
_—

= Use the values of the previous
hidden units as input for the next
autoencoder.

= Train as before

7%

Input Features Il Output

(Features I)
Source: http://ufldl.stanford. edu/wiki/



Stacking Autoencoders - Example

Pretrain softmax layer

= After second pretraining finishes, add
a softmax layer for your classification
task

= Pretrain this layer using back
propagation

—>Py=01x

—> Ply=1]x)

— Py =2 | x)

HE®E

Input Softmax
(Features Il) classifier

Source: http://ufldl.stanford. edu/wiki/



Stacking Autoencoders - Example

—> Py=0]x)

— Ply=1| x)

—> Ply=2]x)

Input Features | Features | Softmax
classifier

Source: http://ufldl.stanford. edu/wiki/

Fine-tuning
= Plug all layers together

= Compute the costs based on the
actual input ¥

= Update all weights using
backpropagation




Is pre-training really necessary?

e Xavier Glorot and Yoshua Bengio, 2010,

Understanding the difficulty of training deep
feedforward neiiral netwinriec
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Is pre-training really necessary?

. Pre-training achieves two things:
- It makes optimization easier
- It reduces overfitting

. Pre-training is not required to make optimization work, if you have enough
data
- Mainly due to a better understanding how initialization works

. Pre-training is still very effective on small datasets

—  More information:
https://www.youtube.com/watch?v=vShMxxgtDDs



https://www.youtube.com/watch?v=vShMxxqtDDs
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Inspired by Hinton
https://www.youtube.com/watch?v=vShMxxqgtDDs

For details:
Srivastava, Hinton et al., 2014, Dropout: A Simple Way to Prevent Neural
Networks from Overtting

26.10.2015 | Computer Science Department | UKP Lab - Prof. Dr. Iryna Gurevych | Nils Reimers |
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https://www.youtube.com/watch?v=vShMxxqtDDs

Ensemble Learning

» Create many different models and combine them at test time to make
prediction

» Averaging over different models is very effective against overfitting

» Random Forest
» A single decision trees is not very powerful
» Creating hundreds of different trees and combine them

= Random forests works really well
» Several Kaggle competitions, e.g. Netflix, were won by random forests

26.10.2015 | Computer Science Department | UKP Lab - Prof. Dr. Iryna Gurevych | Nils Reimers |



Model Averaging with Neural Nets

* We would like to do massive model averaging
= Average over 100, 1.000, 10.000 or 100.000 models

» Each net takes a long time to train
= \We don’t have enough time to learn so many models

» At test time, we don’t want to run lots of large neural nets

* We need something that is more efficient
» Use dropouts!

26.10.2015 | Computer Science Department | UKP Lab - Prof. Dr. Iryna Gurevych | Nils Reimers |



Dropout

» Each time present a training example, we dropout 50% of the hidden
units

= With this, we randomly sample over 2H differentarchitectures
= H: Number of hidden units

= All architectures share the
same weights
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(a) Standard Neural Net (b) After applying dropout.
Img source: http://cs231n.github.io/

26.10.2015 | Computer Science Department | UKP Lab - Prof. Dr. Iryna Gurevych | Nils Reimers |


http://cs231n.github.io/
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Dropout

» With H hidden units, we sample from 2H different models

» Only few of the models get ever trained and they only get 1 training
example

» Sharing of weights means that every model is strongly
regularized

* Much better than L1 and L2 regularization, which pulls weights towards
Zero

= |t pulls weights towards what other models need
= \Weights are pulled towards sensible values

* This works in experiments extremely well

26.10.2015 | Computer Science Department | UKP Lab - Prof. Dr. Iryna Gurevych | Nils Reimers |



Dropout — at test time

= We could sample many different architectures and average the output
» This would be way too slow

» [nstead: Use all hidden units and half their outgoing weights
» Computes the geometric mean of the prediction of all 2H models
= \We can use other dropout rates than p=0.5. At test time, multiply weights by 1-p

» Using this trick, we train and use ftrillions of “different” models

= For the input layer:
= \We could apply dropout also to the input layer
» The probability should be then smaller than 0.5
» This is known as denoising autoencoder
= Currently this cannot be implemented in out-of-the-box Keras

26.10.2015 | Computer Science Department | UKP Lab - Prof. Dr. Iryna Gurevych | Nils Reimers |
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How well does dropout work?

Classification Error %

; \;
@t .'.giﬂ’ ( A, A '6‘ 'm‘
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1 i 1 i
0 200000 400000 600000 800000 1000000

Number of weight updates

Classification error on MNIST dataset

Source: Srivastava et al, 2014, Drouput A Simple Way to Prevent Neural Networks from Overtting
26.10.2015 | Computer Science Department | UKP Lab - Prof. Dr. Iryna Gurevych | Nils Reimers |



How well does dropout work?

*|f your deep neural network is significantly
overfitting, dropout will reduce the number of errors
a lot

*|f your deep neural network is not overfitting, you
should be using a bigger one

= Qur brain: #parameters >> #experiences
» Synapses are much cheaper then experiences

26.10.2015 | Computer Science Department | UKP Lab - Prof. Dr. Iryna Gurevych | Nils Reimers |
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Another way to think about Dropout

* |n a fully connected neural network, a hidden unit knows
which other hidden units are present

* The hidden unit co-adapt with them for the training data
» But big, complex conspiracies are not robust -> they fail at testtime

* |n the dropout scenario, each unit has to work with different
sets of co-workers

= |t is likely that the hidden unit does something individually useful
= |t still tries to be different from its co-workers

26.10.2015 | Computer Science Department | UKP Lab - Prof. Dr. Iryna Gurevych | Nils Reimers |



