
CS60020: Foundations of
Algorithm Design and Machine

Learning
Sourangshu Bhattacharya

DIVIDE AND CONQUER

Matrix multiplication

Standard algorithm

for i ¬ 1 to n
do for j ¬ 1 ton

do cij ¬ 0
for k ¬ 1 to n

do cij ¬ cij + aik× bkj

Standard algorithm

for i ¬ 1 to n
do for j ¬ 1 ton

do cij ¬ 0
for k ¬ 1 to n

do cij ¬ cij + aik× bkj

Running time = Q(n3)

Divide-and-conquer algorithm

Divide-and-conquer algorithm

Analysis of D&C algorithm

submatrices
submatrix size

work adding
submatrices

T(n) = 8 T(n/2) +Q(n2)

Analysis of D&C algorithm

submatrices
submatrix size

work adding
submatrices

T(n) = 8 T(n/2) +Q(n2)

nlogba = nlog28 = n3 Þ CASE 1 Þ T(n) = Q(n3).

Analysis of D&C algorithm

submatrices
submatrix size

work adding
submatrices

T(n) = 8 T(n/2) +Q(n2)

nlogba = nlog28 = n3 Þ CASE 1 Þ T(n) = Q(n3).

No better than the ordinary algorithm.

Strassen’s idea
• Multiply 2´2 matrices with only 7 recursive mults.

Strassen’s idea
• Multiply 2´2 matrices with only 7 recursive mults.

P1 = a × (f – h)
P2 = (a + b) × h
P3 = (c + d) × e
P4 = d × (g – e)
P5 = (a + d) × (e + h)
P6 = (b – d) × (g + h)
P7 = (a – c) × (e + f)

Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.37

Strassen’s idea
• Multiply 2´2 matrices with only 7 recursive mults.

r = P5 + P4 – P2 + P6
s = P1 + P2
t = P3 + P4
u = P5 + P1 – P3 –P7

P1 = a × (f – h)
P2 = (a + b) × h
P3 = (c + d) × e
P4 = d × (g – e)
P5 = (a + d) × (e + h)
P6 = (b – d) × (g + h)
P7 = (a – c) × (e + f)

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.38

Strassen’s idea
• Multiply 2´2 matrices with only 7 recursive mults.

r = P5 + P4 – P2 + P6
s = P1 + P2
t = P3 + P4
u = P5 + P1 – P3 –P7

P1 = a × (f – h)
P2 = (a + b) × h
P3 = (c + d) × e
P4 = d × (g – e)
P5 = (a + d) × (e + h)
P6 = (b – d) × (g + h)
P7 = (a – c) × (e + f)

7 mults, 18 adds/subs.
Note: No reliance on
commutativity of mult!

7 mults, 18 adds/subs.
Note: No reliance on
commutativity of mult!

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.39

Strassen’s idea
• Multiply 2´2 matrices with only 7 recursive mults.

r = P5 + P4 – P2 + P6
= (a + d) (e + h)

+ d (g – e) – (a + b) h
+ (b – d) (g + h)

= ae + ah + de + dh
+ dg –de – ah – bh
+ bg + bh – dg – dh

= ae + bg

P1 = a × (f – h)
P2 = (a + b) × h
P3 = (c + d) × e
P4 = d × (g – e)
P5 = (a + d) × (e + h)
P6 = (b – d) × (g + h)
P7 = (a – c) × (e + f)

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.40

Strassen’s algorithm
1. Divide: Partition A and B into

(n/2)´(n/2) submatrices. Form terms
to be multiplied using + and – .

2. Conquer: Perform 7 multiplications of
(n/2)´(n/2) submatrices recursively.

3. Combine: Form C using + and – on
(n/2)´(n/2) submatrices.

L2.41

Strassen’s algorithm
1. Divide: Partition A and B into

(n/2)´(n/2) submatrices. Form terms
to be multiplied using + and – .

2. Conquer: Perform 7 multiplications of
(n/2)´(n/2) submatrices recursively.

3. Combine: Form C using + and – on
(n/2)´(n/2) submatrices.

T(n) = 7 T(n/2) +Q(n2)

L2.5

Master theorem
T(n) = a T(n/b) + f (n)

CASE 1: f (n) = O(nlogba – e), constant e > 0
Þ T(n) = Q(nlogba) .

CASE 2: f (n) = Q(nlogba)
Þ T(n) = Q(nlogba lg n) .

CASE 3: f (n) = W(nlogba + e), constant e >0,
and regularity condition
Þ T(n) = Q(f (n)) .

Proof of Master theorem

Proof of Master theorem

Proof of Master theorem

• Case 1:

Proof of Master theorem

• Case 2:

Proof of Master theorem

• Case 3:

