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Linear Basis Function Models (1)

Example: Polynomial Curve Fitting



Linear Basis Function Models (2)

Generally

where Áj(x) are known as basis functions.
Typically, Á0(x) = 1, so that w0 acts as a bias.
In the simplest case, we use linear basis 

functions : Ád(x) = xd.



Linear Basis Function Models (3)

Polynomial basis functions:

These are global; a small 
change in x affect all basis 
functions.



Linear Basis Function Models (4)

Gaussian basis functions:

These are local; a small change 
in x only affect nearby basis 
functions. µj and s control 
location and scale (width).



Linear Basis Function Models (5)

Sigmoidal basis functions:

where

Also these are local; a small 
change in x only affect nearby 
basis functions. µj and s
control location and scale 
(slope).



Maximum Likelihood and Least Squares (1)

Assume observations from a deterministic function 
with added Gaussian noise:

which is the same as saying,

Given observed inputs,                            , and targets,
, we obtain the likelihood function  

where



Maximum Likelihood and Least Squares (2)

Taking the logarithm, we get

where

is the sum-of-squares error.



Computing the gradient and setting it to zero yields

Solving for w, we get 

where

Maximum Likelihood and Least Squares (3)

The Moore-Penrose 
pseudo-inverse,       .



Geometry of Least Squares

Consider

S is spanned by                    .
wML minimizes the distance 
between t and its orthogonal 
projection on S, i.e. y.

N-dimensional
M-dimensional



Least Squares Estimator



Least Squares Estimator



Normal Equations

If is invertible,

When is invertible ?
Recall: Full rank matrices are invertible.

What if is not invertible ?  

p xp p x1 p x1



Gradient Descent

1
4

Even when is invertible, might be computationally expensive if A is huge.

Treat as optimization problem

Observation: J(β) is convex in β.

J(β1)

β1
β1 β2

How to find the minimizer?

J(β1, β2)



Gradient Descent

Even when is invertible, might be computationally expensive if A is huge.

Initialize:

Update:

0 if =

Stop: when some criterion met e.g. fixed # iterations, or < ε.

Since J(b) is convex, move along negative of gradient

step size



Effect of step--size α

Large α => Fast convergence but larger residual error  
Also possible oscillations

Small α => Slow convergence but small residual error



Stochastic Gradient Descent

Gradient descent (also known as Batch 
Gradient Descent) computes the gradient 
using the whole dataset

Stochastic Gradient Descent computes the 
gradient using a single sample (or a mini-
batch).



Sequential Learning

Data items considered one at a time (a.k.a. 
online learning);  use stochastic (sequential) 
gradient descent:

This is known as the least-mean-squares (LMS) 
algorithm. Issue: how to choose ´?



Regularized Least Squares (1)

Consider the error function:

With the sum-of-squares error function and a 
quadratic regularizer, we get  

which is minimized by

Data term + Regularization term

¸ is called the 
regularization 
coefficient.



Regularized Least Squares (2)

With a more general regularizer, we have

Lasso Quadratic



Regularized Least Squares (3)

Lasso tends to generate sparser solutions than a 
quadratic 
regularizer. 



Multiple Outputs (1)

Analogously to the single output case we have:

Given observed inputs,                            , and targets,
, we obtain the log likelihood function



Multiple Outputs (2)

Maximizing with respect to W, we obtain

If we consider a single target variable, tk, we see that

where                               , which is identical with the 
single output case.



The Bias-Variance Decomposition (1)

Recall the expected squared loss,

where

The second term of E[L] corresponds to the noise 
inherent in the random variable t.

What about the first term?



The Bias-Variance Decomposition (2)

Suppose we were given multiple data sets, each of 
size N. Any particular data set, D, will give a 
particular function y(x;D). We then have



The Bias-Variance Decomposition (3)

Taking the expectation over D yields



The Bias-Variance Decomposition (4)

Thus we can write

where 



The Bias-Variance Decomposition (5)

Example: 25 data sets from the sinusoidal, varying 
the degree of regularization, ¸.



The Bias-Variance Decomposition (6)

Example: 25 data sets from the sinusoidal, varying 
the degree of regularization, ¸.



The Bias-Variance Decomposition (7)

Example: 25 data sets from the sinusoidal, varying 
the degree of regularization, ¸.



The Bias-Variance Trade-off

From these plots, we note 
that an over-regularized 
model (large ¸) will have a 
high  bias, while an under-
regularized model (small ¸) 
will have a high variance.



Bayesian Linear Regression (1)

Define a conjugate prior over w

Combining this with the likelihood function and using  
results for marginal and conditional Gaussian 
distributions, gives the posterior 

where 



Bayesian Linear Regression (2)

A common choice for the prior is 

for which

Next we consider an example …



Bayesian Linear Regression (3)

0 data points observed

Prior Data Space



Bayesian Linear Regression (4)

1 data point observed

Likelihood Posterior Data Space



Bayesian Linear Regression (5)

2 data points observed

Likelihood Posterior Data Space



Bayesian Linear Regression (6)

20 data points observed

Likelihood Posterior Data Space



Predictive Distribution (1)

Predict t for new values of x by integrating 
over w:

where



Predictive Distribution (2)

Example: Sinusoidal data, 9 Gaussian basis functions, 
1 data point



Predictive Distribution (3)

Example: Sinusoidal data, 9 Gaussian basis functions, 
2 data points



Predictive Distribution (4)

Example: Sinusoidal data, 9 Gaussian basis functions, 
4 data points



Predictive Distribution (5)

Example: Sinusoidal data, 9 Gaussian basis functions, 
25 data points



Equivalent Kernel (1)

The predictive mean can be written

This is a weighted sum of the training data 
target values, tn.

Equivalent kernel or 
smoother matrix.



Equivalent Kernel (2)

Weight of tn depends on distance between x and xn; 
nearby xn carry more weight.



Equivalent Kernel (3)

Non-local basis functions have local equivalent 
kernels:

Polynomial Sigmoidal



Equivalent Kernel (4)

The kernel as a covariance function: consider

We can avoid the use of basis functions and 
define the kernel function directly, leading 
to  Gaussian Processes (Chapter 6).



Equivalent Kernel (5)

for all values of x; however, the equivalent kernel 
may be negative for some values of x.

Like all kernel functions, the equivalent kernel can be 
expressed as an inner product:

where                                  .


