CS60020: Foundations of Algorithm Design and Machine Learning

Sourangshu Bhattacharya

Linear Basis Function Models (1)

Example: Polynomial Curve Fitting

Linear Basis Function Models (2)

Generally

$$y(\mathbf{x}, \mathbf{w}) = \sum_{j=0}^{M-1} w_j \phi_j(\mathbf{x}) = \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x})$$

where $\phi_j(\mathbf{x})$ are known as *basis functions*. Typically, $\phi_0(\mathbf{x}) = 1$, so that w_0 acts as a bias. In the simplest case, we use linear basis functions : $\phi_d(\mathbf{x}) = x_d$.

Linear Basis Function Models (3)

Polynomial basis functions:

$$\phi_j(x) = x^j.$$

These are global; a small change in x affect all basis functions.

Linear Basis Function Models (4)

Gaussian basis functions:

$$\phi_j(x) = \exp\left\{-\frac{(x-\mu_j)^2}{2s^2}\right\}$$

These are local; a small change in x only affect nearby basis functions. μ_j and s control location and scale (width).

Linear Basis Function Models (5)

Sigmoidal basis functions:

$$\phi_j(x) = \sigma\left(\frac{x-\mu_j}{s}\right)$$

where

$$\sigma(a) = \frac{1}{1 + \exp(-a)}.$$

Also these are local; a small change in x only affect nearby basis functions. μ_j and scontrol location and scale (slope).

Maximum Likelihood and Least Squares (1)

Assume observations from a deterministic function with added Gaussian noise:

 $t = y(\mathbf{x}, \mathbf{w}) + \epsilon$ where $p(\epsilon|\beta) = \mathcal{N}(\epsilon|0, \beta^{-1})$

which is the same as saying,

$$p(t|\mathbf{x}, \mathbf{w}, \beta) = \mathcal{N}(t|y(\mathbf{x}, \mathbf{w}), \beta^{-1}).$$

Given observed inputs, $\mathbf{X} = {\mathbf{x}_1, \dots, \mathbf{x}_N}$, and targets, $\mathbf{t} = [t_1, \dots, t_N]^T$, we obtain the likelihood function $p(\mathbf{t} | \mathbf{X}, \mathbf{w}, \beta) = \prod_{n=1}^N \mathcal{N}(t_n | \mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}_n), \beta^{-1}).$

Maximum Likelihood and Least Squares (2)

Taking the logarithm, we get

1

$$\begin{split} \ln p(\mathbf{t}|\mathbf{w},\beta) &= \sum_{n=1}^{N} \ln \mathcal{N}(t_n|\mathbf{w}^{\mathrm{T}}\boldsymbol{\phi}(\mathbf{x}_n),\beta^{-1}) \\ &= \frac{N}{2} \ln \beta - \frac{N}{2} \ln(2\pi) - \beta E_D(\mathbf{w}) \end{split}$$

where

$$E_D(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{t_n - \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n)\}^2$$

is the sum-of-squares error.

Maximum Likelihood and Least Squares (3)

Computing the gradient and setting it to zero yields

$$\nabla_{\mathbf{w}} \ln p(\mathbf{t}|\mathbf{w},\beta) = \beta \sum_{n=1}^{N} \left\{ t_n - \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n) \right\} \boldsymbol{\phi}(\mathbf{x}_n)^{\mathrm{T}} = \mathbf{0}.$$

$$\boldsymbol{\Phi} = \begin{pmatrix} \phi_0(\mathbf{x}_1) & \phi_1(\mathbf{x}_1) & \cdots & \phi_{M-1}(\mathbf{x}_1) \\ \phi_0(\mathbf{x}_2) & \phi_1(\mathbf{x}_2) & \cdots & \phi_{M-1}(\mathbf{x}_2) \\ \vdots & \vdots & \ddots & \vdots \\ \phi_0(\mathbf{x}_N) & \phi_1(\mathbf{x}_N) & \cdots & \phi_{M-1}(\mathbf{x}_N) \end{pmatrix}$$

Geometry of Least Squares

Consider

 $\mathbf{y} = \mathbf{\Phi} \mathbf{w}_{\mathrm{ML}} = [\mathbf{\varphi}_1, \dots, \mathbf{\varphi}_M] \mathbf{w}_{\mathrm{ML}}.$ $\mathbf{y} \in \mathcal{S} \subseteq \mathcal{T} \qquad \mathbf{t} \in \mathcal{T}$ $\bigwedge_{N\text{-dimensional}}^{N\text{-dimensional}}$

S is spanned by $\varphi_1, \ldots, \varphi_M$. \mathbf{w}_{ML} minimizes the distance between \mathbf{t} and its orthogonal projection on S, i.e. \mathbf{y} .

Least Squares Estimator

$$\hat{f}_{n}^{L} = \arg\min_{f \in \mathcal{F}_{L}} \frac{1}{n} \sum_{i=1}^{n} (f(X_{i}) - Y_{i})^{2} \qquad f(X_{i}) = X_{i}\beta$$

$$\hat{\beta} = \arg\min_{\beta} \frac{1}{n} \sum_{i=1}^{n} (X_{i}\beta - Y_{i})^{2} \qquad \hat{f}_{n}^{L}(X) = X\hat{\beta}$$

$$= \arg\min_{\beta} \frac{1}{n} (\mathbf{A}\beta - \mathbf{Y})^{T} (\mathbf{A}\beta - \mathbf{Y})$$

$$\int W_{i} = \sum_{j=1}^{n} (X_{j}\beta - \mathbf{Y})^{T} (\mathbf{A}\beta - \mathbf{Y})$$

$$\mathbf{A} = \begin{bmatrix} X_1 \\ \vdots \\ X_n \end{bmatrix} = \begin{bmatrix} X_1^{(1)} & \dots & X_1^{(p)} \\ \vdots & \ddots & \vdots \\ X_n^{(1)} & \dots & X_n^{(p)} \end{bmatrix} \quad \mathbf{Y} = \begin{bmatrix} \mathbf{Y}_1 \\ \vdots \\ \mathbf{Y}_n \end{bmatrix}$$

Least Squares Estimator

$$\widehat{eta} = \arg\min_{eta} rac{1}{n} (\mathbf{A}eta - \mathbf{Y})^T (\mathbf{A}eta - \mathbf{Y}) = \arg\min_{eta} J(eta)$$

$$J(\beta) = (\mathbf{A}\beta - \mathbf{Y})^T (\mathbf{A}\beta - \mathbf{Y})$$

$$\left. \frac{\partial J(\beta)}{\partial \beta} \right|_{\widehat{\beta}} = 0$$

Normal Equations

$$(\mathbf{A}^T \mathbf{A})\widehat{\boldsymbol{\beta}} = \mathbf{A}^T \mathbf{Y}$$

If $(\mathbf{A}^T \mathbf{A})$ is invertible,

$$\widehat{\beta} = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \mathbf{Y} \qquad \widehat{f}_n^L(X) = X \widehat{\beta}$$

When is $(\mathbf{A}^T \mathbf{A})$ invertible ? Recall: Full rank matrices are invertible.

What if $(\mathbf{A}^T \mathbf{A})$ is not invertible ?

Gradient Descent

Even when $(\mathbf{A}^T \mathbf{A})$ is invertible, might be computationally expensive if **A** is huge.

$$\widehat{\beta} = \arg\min_{\beta} \frac{1}{n} (\mathbf{A}\beta - \mathbf{Y})^T (\mathbf{A}\beta - \mathbf{Y}) = \arg\min_{\beta} J(\beta)$$

Treat as optimization problem

Gradient Descent

Even when $(\mathbf{A}^T \mathbf{A})$ is invertible, might be computationally expensive if **A** is huge.

$$\widehat{\beta} = \arg\min_{\beta} \frac{1}{n} (\mathbf{A}\beta - \mathbf{Y})^T (\mathbf{A}\beta - \mathbf{Y}) = \arg\min_{\beta} J(\beta)$$

Since $J(\beta)$ is convex, move along negative of gradient

< 8.

Stop: when some criterion met e.g. fixed # iterations, or $\frac{\partial J(\beta)}{\partial \beta}$

Effect of step--size α

Large $\alpha \Rightarrow$ Fast convergence but larger residual error Also possible oscillations

Small $\alpha \Rightarrow$ Slow convergence but small residual error

Gradient descent (also known as Batch Gradient Descent) computes the gradient using the whole dataset

Stochastic Gradient Descent computes the gradient using a single sample (or a minibatch).

Data items considered one at a time (a.k.a. online learning); use stochastic (sequential) gradient descent:

$$\mathbf{w}^{(\tau+1)} = \mathbf{w}^{(\tau)} - \eta \nabla E_n$$

=
$$\mathbf{w}^{(\tau)} + \eta (t_n - \mathbf{w}^{(\tau)T} \boldsymbol{\phi}(\mathbf{x}_n)) \boldsymbol{\phi}(\mathbf{x}_n).$$

This is known as the *least-mean-squares (LMS)* algorithm. Issue: how to choose η ?

Regularized Least Squares (1)

Consider the error function:

 $E_D(\mathbf{w}) + \lambda E_W(\mathbf{w})$

Data term + Regularization term

With the sum-of-squares error function and a quadratic regularizer, we get

$$\frac{1}{2}\sum_{n=1}^{N} \{t_n - \mathbf{w}^{\mathrm{T}}\boldsymbol{\phi}(\mathbf{x}_n)\}^2 + \frac{\lambda}{2}\mathbf{w}^{\mathrm{T}}\mathbf{w}$$

 λ is called the regularization coefficient.

which is minimized by

$$\mathbf{w} = \left(\lambda \mathbf{I} + \mathbf{\Phi}^{\mathrm{T}} \mathbf{\Phi}\right)^{-1} \mathbf{\Phi}^{\mathrm{T}} \mathbf{t}.$$

Regularized Least Squares (2)

With a more general regularizer, we have

Regularized Least Squares (3)

Lasso tends to generate sparser solutions than a quadratic regularizer. $w_2 \uparrow w_2 \uparrow w_2$

Analogously to the single output case we have:

$$egin{aligned} p(\mathbf{t}|\mathbf{x},\mathbf{W},eta) &= & \mathcal{N}(\mathbf{t}|\mathbf{y}(\mathbf{W},\mathbf{x}),eta^{-1}\mathbf{I}) \ &= & \mathcal{N}(\mathbf{t}|\mathbf{W}^{\mathrm{T}}oldsymbol{\phi}(\mathbf{x}),eta^{-1}\mathbf{I}). \end{aligned}$$

Given observed inputs, $\mathbf{X} = {\mathbf{x}_1, \dots, \mathbf{x}_N}$, and targets, $\mathbf{T} = [\mathbf{t}_1, \dots, \mathbf{t}_N]^T$, we obtain the log likelihood function

$$\ln p(\mathbf{T}|\mathbf{X}, \mathbf{W}, \beta) = \sum_{n=1}^{N} \ln \mathcal{N}(\mathbf{t}_n | \mathbf{W}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n), \beta^{-1} \mathbf{I})$$
$$= \frac{NK}{2} \ln \left(\frac{\beta}{2\pi}\right) - \frac{\beta}{2} \sum_{n=1}^{N} \left\|\mathbf{t}_n - \mathbf{W}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n)\right\|^2.$$

Maximizing with respect to \mathbf{W} , we obtain

$$\mathbf{W}_{\mathrm{ML}} = \left(\mathbf{\Phi}^{\mathrm{T}} \mathbf{\Phi}
ight)^{-1} \mathbf{\Phi}^{\mathrm{T}} \mathbf{T}.$$

If we consider a single target variable, t_k , we see that

$$\mathbf{w}_k = \left(\mathbf{\Phi}^{\mathrm{T}} \mathbf{\Phi}
ight)^{-1} \mathbf{\Phi}^{\mathrm{T}} \mathbf{t}_k = \mathbf{\Phi}^{\dagger} \mathbf{t}_k$$

where $\mathbf{t}_k = [t_{1k}, \dots, t_{Nk}]^T$, which is identical with the single output case.

The Bias-Variance Decomposition (1)

Recall the expected squared loss,

$$\mathbb{E}[L] = \int \left\{ y(\mathbf{x}) - h(\mathbf{x}) \right\}^2 p(\mathbf{x}) \, \mathrm{d}\mathbf{x} + \iint \{h(\mathbf{x}) - t\}^2 p(\mathbf{x}, t) \, \mathrm{d}\mathbf{x} \, \mathrm{d}t$$

where
$$h(\mathbf{x}) = \mathbb{E}[t|\mathbf{x}] = \int tp(t|\mathbf{x}) \, \mathrm{d}t.$$

The second term of $\mathbb{E}[L]$ corresponds to the noise inherent in the random variable t.

What about the first term?

The Bias-Variance Decomposition (2)

Suppose we were given multiple data sets, each of size N. Any particular data set, \mathcal{D} , will give a particular function $y(\mathbf{x};\mathcal{D})$. We then have

$$\{y(\mathbf{x}; \mathcal{D}) - h(\mathbf{x})\}^{2}$$

$$= \{y(\mathbf{x}; \mathcal{D}) - \mathbb{E}_{\mathcal{D}}[y(\mathbf{x}; \mathcal{D})] + \mathbb{E}_{\mathcal{D}}[y(\mathbf{x}; \mathcal{D})] - h(\mathbf{x})\}^{2}$$

$$= \{y(\mathbf{x}; \mathcal{D}) - \mathbb{E}_{\mathcal{D}}[y(\mathbf{x}; \mathcal{D})]\}^{2} + \{\mathbb{E}_{\mathcal{D}}[y(\mathbf{x}; \mathcal{D})] - h(\mathbf{x})\}^{2}$$

$$+ 2\{y(\mathbf{x}; \mathcal{D}) - \mathbb{E}_{\mathcal{D}}[y(\mathbf{x}; \mathcal{D})]\}\{\mathbb{E}_{\mathcal{D}}[y(\mathbf{x}; \mathcal{D})] - h(\mathbf{x})\}.$$

The Bias-Variance Decomposition (3)

Taking the expectation over ${\cal D}$ yields

$$\mathbb{E}_{\mathcal{D}}\left[\{y(\mathbf{x}; \mathcal{D}) - h(\mathbf{x})\}^{2}\right] \\ = \underbrace{\{\mathbb{E}_{\mathcal{D}}[y(\mathbf{x}; \mathcal{D})] - h(\mathbf{x})\}^{2}}_{(\text{bias})^{2}} + \underbrace{\mathbb{E}_{\mathcal{D}}\left[\{y(\mathbf{x}; \mathcal{D}) - \mathbb{E}_{\mathcal{D}}[y(\mathbf{x}; \mathcal{D})]\}^{2}\right]}_{\text{variance}}.$$

The Bias-Variance Decomposition (4)

Thus we can write

expected $loss = (bias)^2 + variance + noise$ where

$$(\text{bias})^2 = \int \{\mathbb{E}_{\mathcal{D}}[y(\mathbf{x};\mathcal{D})] - h(\mathbf{x})\}^2 p(\mathbf{x}) \, \mathrm{d}\mathbf{x}$$

variance =
$$\int \mathbb{E}_{\mathcal{D}} \left[\{y(\mathbf{x};\mathcal{D}) - \mathbb{E}_{\mathcal{D}}[y(\mathbf{x};\mathcal{D})]\}^2 \right] p(\mathbf{x}) \, \mathrm{d}\mathbf{x}$$

noise =
$$\iint \{h(\mathbf{x}) - t\}^2 p(\mathbf{x},t) \, \mathrm{d}\mathbf{x} \, \mathrm{d}t$$

The Bias-Variance Decomposition (5)

Example: 25 data sets from the sinusoidal, varying the degree of regularization, λ .

The Bias-Variance Decomposition (6)

Example: 25 data sets from the sinusoidal, varying the degree of regularization, λ .

The Bias-Variance Decomposition (7)

Example: 25 data sets from the sinusoidal, varying the degree of regularization, λ .

The Bias-Variance Trade-off

From these plots, we note that an over-regularized model (large λ) will have a high bias, while an underregularized model (small λ) will have a high variance.

Bayesian Linear Regression (1)

Define a conjugate prior over $\ensuremath{\mathbf{w}}$

 $p(\mathbf{w}) = \mathcal{N}(\mathbf{w}|\mathbf{m}_0, \mathbf{S}_0).$

Combining this with the likelihood function and using results for marginal and conditional Gaussian distributions, gives the posterior

$$p(\mathbf{w}|\mathbf{t}) = \mathcal{N}(\mathbf{w}|\mathbf{m}_N, \mathbf{S}_N)$$

where

$$\begin{split} \mathbf{m}_N &= \mathbf{S}_N \left(\mathbf{S}_0^{-1} \mathbf{m}_0 + \beta \mathbf{\Phi}^{\mathrm{T}} \mathbf{t} \right) \\ \mathbf{S}_N^{-1} &= \mathbf{S}_0^{-1} + \beta \mathbf{\Phi}^{\mathrm{T}} \mathbf{\Phi}. \end{split}$$

Bayesian Linear Regression (2)

A common choice for the prior is

 $p(\mathbf{w}) = \mathcal{N}(\mathbf{w}|\mathbf{0}, \alpha^{-1}\mathbf{I})$

for which

$$\mathbf{m}_N = \beta \mathbf{S}_N \mathbf{\Phi}^{\mathrm{T}} \mathbf{t} \\ \mathbf{S}_N^{-1} = \alpha \mathbf{I} + \beta \mathbf{\Phi}^{\mathrm{T}} \mathbf{\Phi}.$$

Next we consider an example ...

Bayesian Linear Regression (3)

0 data points observed

Bayesian Linear Regression (4)

1 data point observed

Bayesian Linear Regression (5)

2 data points observed

Bayesian Linear Regression (6)

20 data points observed

Predictive Distribution (1)

Predict t for new values of x by integrating over w:

$$p(t|\mathbf{t}, \alpha, \beta) = \int p(t|\mathbf{w}, \beta) p(\mathbf{w}|\mathbf{t}, \alpha, \beta) \, \mathrm{d}\mathbf{w}$$
$$= \mathcal{N}(t|\mathbf{m}_N^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}), \sigma_N^2(\mathbf{x}))$$

where

$$\sigma_N^2(\mathbf{x}) = \frac{1}{\beta} + \boldsymbol{\phi}(\mathbf{x})^{\mathrm{T}} \mathbf{S}_N \boldsymbol{\phi}(\mathbf{x}).$$

Predictive Distribution (2)

Example: Sinusoidal data, 9 Gaussian basis functions, 1 data point

Predictive Distribution (3)

Example: Sinusoidal data, 9 Gaussian basis functions, 2 data points

Predictive Distribution (4)

Example: Sinusoidal data, 9 Gaussian basis functions, 4 data points

Predictive Distribution (5)

Example: Sinusoidal data, 9 Gaussian basis functions, 25 data points

Equivalent Kernel (1)

The predictive mean can be written

This is a weighted sum of the training data target values, t_n .

Equivalent Kernel (2)

Weight of t_n depends on distance between x and x_n ; nearby x_n carry more weight.

Equivalent Kernel (3)

Non-local basis functions have local equivalent kernels:

The kernel as a covariance function: consider

$$\begin{aligned} \operatorname{cov}[y(\mathbf{x}), y(\mathbf{x}')] &= \operatorname{cov}[\boldsymbol{\phi}(\mathbf{x})^{\mathrm{T}} \mathbf{w}, \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}')] \\ &= \boldsymbol{\phi}(\mathbf{x})^{\mathrm{T}} \mathbf{S}_{N} \boldsymbol{\phi}(\mathbf{x}') = \beta^{-1} k(\mathbf{x}, \mathbf{x}'). \end{aligned}$$

We can avoid the use of basis functions and define the kernel function directly, leading to *Gaussian Processes* (Chapter 6).

$$\sum_{n=1}^{N} k(\mathbf{x}, \mathbf{x}_n) = 1$$

for all values of \mathbf{x} ; however, the equivalent kernel may be negative for some values of \mathbf{x} .

Like all kernel functions, the equivalent kernel can be expressed as an inner product:

$$k(\mathbf{x}, \mathbf{z}) = \boldsymbol{\psi}(\mathbf{x})^{\mathrm{T}} \boldsymbol{\psi}(\mathbf{z})$$

where $\psi(\mathbf{x}) = \beta^{1/2} \mathbf{S}_N^{1/2} \phi(\mathbf{x})$.