
CS19001:
Programming and
Data Structures

Laboratory

String,
Pointers,
Dynamic
Memory
Allocation
DRC, SD, SB;

CSE, IIT
Kharagpur

Tutorial:
Characters

Tutorial: Strings

Tutorial: Pointers

Dynamic Memory
Allocation

Assignments

Tutorial: Characters Tutorial: Strings Tutorial: Pointers Dynamic Memory Allocation Assignments

CS19001: Programming and Data
Structures Laboratory

String, Pointers, Dynamic Memory Allocation

DRC, SD, SB; CSE, IIT Kharagpur

March 20, 2025

DRC, SD, SB; CSE, IIT Kharagpur CS19001: Programming and Data Structures Laboratory String, Pointers, Dynamic Memory Allocation 1 / 35

CS19001:
Programming and
Data Structures

Laboratory

String,
Pointers,
Dynamic
Memory
Allocation
DRC, SD, SB;

CSE, IIT
Kharagpur

Tutorial:
Characters

Tutorial: Strings

Tutorial: Pointers

Dynamic Memory
Allocation

Assignments

Tutorial: Characters Tutorial: Strings Tutorial: Pointers Dynamic Memory Allocation Assignments

Table of Contents

1 Tutorial: Characters

2 Tutorial: Strings

3 Tutorial: Pointers

4 Dynamic Memory Allocation

5 Assignments

DRC, SD, SB; CSE, IIT Kharagpur CS19001: Programming and Data Structures Laboratory String, Pointers, Dynamic Memory Allocation 2 / 35

CS19001:
Programming and
Data Structures

Laboratory

String,
Pointers,
Dynamic
Memory
Allocation
DRC, SD, SB;

CSE, IIT
Kharagpur

Tutorial:
Characters

Tutorial: Strings

Tutorial: Pointers

Dynamic Memory
Allocation

Assignments

Tutorial: Characters Tutorial: Strings Tutorial: Pointers Dynamic Memory Allocation Assignments

Characters

Declaration and Initialization
char ch = ‘a’; OR char ch; ch = ‘a’;

ASCII Values of Characters
Every character has an integer ASCII value and you can get that
by printing it in integer format.

char ch = ‘a’;

printf(‘‘%d’’,ch);

// prints ASCII value (97) of ‘a’

Let us not memorize the ASCII values (of a-z, A-Z and 0-9). It
can easily be assigned to any integer and can be found/operated.
Moreover, integers and characters are inter-operable.

int x = ‘A’;

printf(‘‘%c’’,x+3);

// prints the character ‘D’

DRC, SD, SB; CSE, IIT Kharagpur CS19001: Programming and Data Structures Laboratory String, Pointers, Dynamic Memory Allocation 3 / 35

CS19001:
Programming and
Data Structures

Laboratory

String,
Pointers,
Dynamic
Memory
Allocation
DRC, SD, SB;

CSE, IIT
Kharagpur

Tutorial:
Characters

Tutorial: Strings

Tutorial: Pointers

Dynamic Memory
Allocation

Assignments

Tutorial: Characters Tutorial: Strings Tutorial: Pointers Dynamic Memory Allocation Assignments

Character manipulations

Example: Simple text encryption
Caesar cipher is a simple technique of encryption of plain text
byreplacing every character in the plain text by a character fixed
number of positions down the list of the alphabet. The last characters
are folded back to the beginning. The numerical digits and all other
characters will remain unchanged.

Shift: 5 Shift: 2

Original Encrypted Original Encrypted

‘A’ ‘F’ ‘a’ ‘c’

‘B’ ‘G’ ‘b’ ‘d’
...

...
...

...

‘Y’ ‘D’ ‘y’ ‘a’

‘Z’ ‘E’ ‘z’ ‘b’

Let us program to read a text stream and will encrypt the English
alphabets, [A - Z] and [a - z], using Caesar cipher. The value of shift
should be within 1− 10 and will be decided by the rand() function.

DRC, SD, SB; CSE, IIT Kharagpur CS19001: Programming and Data Structures Laboratory String, Pointers, Dynamic Memory Allocation 4 / 35

CS19001:
Programming and
Data Structures

Laboratory

String,
Pointers,
Dynamic
Memory
Allocation
DRC, SD, SB;

CSE, IIT
Kharagpur

Tutorial:
Characters

Tutorial: Strings

Tutorial: Pointers

Dynamic Memory
Allocation

Assignments

Tutorial: Characters Tutorial: Strings Tutorial: Pointers Dynamic Memory Allocation Assignments

C-Program: Simple text encryption
#include <stdio.h>

#include <stdlib.h> // for rand()

#include <ctype.h> // for isalpha ()

int main()

{

char c, shift;

// generating random shift

shift = (char)(rand ()%10 + 1);

while ((c = getchar ()) != EOF) {

if(isalpha(c)) { // checking for alphabets

if(isupper(c)) // upper -case alphabet

putchar ((c-‘A’+shift)%26+‘A’);

else // lower -case alphabet

putchar ((c-‘a’+shift)%26+‘a’);

}

else putchar(c); // other characters unchanged

}

putchar(‘\n’);

return 0;

}

DRC, SD, SB; CSE, IIT Kharagpur CS19001: Programming and Data Structures Laboratory String, Pointers, Dynamic Memory Allocation 5 / 35

CS19001:
Programming and
Data Structures

Laboratory

String,
Pointers,
Dynamic
Memory
Allocation
DRC, SD, SB;

CSE, IIT
Kharagpur

Tutorial:
Characters

Tutorial: Strings

Tutorial: Pointers

Dynamic Memory
Allocation

Assignments

Tutorial: Characters Tutorial: Strings Tutorial: Pointers Dynamic Memory Allocation Assignments

Table of Contents

1 Tutorial: Characters

2 Tutorial: Strings

3 Tutorial: Pointers

4 Dynamic Memory Allocation

5 Assignments

DRC, SD, SB; CSE, IIT Kharagpur CS19001: Programming and Data Structures Laboratory String, Pointers, Dynamic Memory Allocation 6 / 35

CS19001:
Programming and
Data Structures

Laboratory

String,
Pointers,
Dynamic
Memory
Allocation
DRC, SD, SB;

CSE, IIT
Kharagpur

Tutorial:
Characters

Tutorial: Strings

Tutorial: Pointers

Dynamic Memory
Allocation

Assignments

Tutorial: Characters Tutorial: Strings Tutorial: Pointers Dynamic Memory Allocation Assignments

Strings
In C, a string is defined to be a null-terminated character
array. The null character ’\0’ is used to indicate the end of
the string.

int main ()

{

char greet [3]={’H’,’i’,’\0’};

printf("Greeting message: %s\n",greet);

return 0;

}

Variation in initialization

char c[]="abcd";

char c[5]="abcd";

char c[]={’a’,’b’,’c’,’d’,’\0’};

char c[5]={ ’a’,’b’,’c’,’d’,’\0’};

DRC, SD, SB; CSE, IIT Kharagpur CS19001: Programming and Data Structures Laboratory String, Pointers, Dynamic Memory Allocation 7 / 35

CS19001:
Programming and
Data Structures

Laboratory

String,
Pointers,
Dynamic
Memory
Allocation
DRC, SD, SB;

CSE, IIT
Kharagpur

Tutorial:
Characters

Tutorial: Strings

Tutorial: Pointers

Dynamic Memory
Allocation

Assignments

Tutorial: Characters Tutorial: Strings Tutorial: Pointers Dynamic Memory Allocation Assignments

Reading string from terminal

#include <stdio.h>

int main (){

char name [20];

printf("Enter name: ");

scanf("%s",name);

printf("Your name is %s.",name);

return 0;

}

Enter name: Dennis Ritchie
Your name is Dennis.

scanf() function takes only string before the white
space.

DRC, SD, SB; CSE, IIT Kharagpur CS19001: Programming and Data Structures Laboratory String, Pointers, Dynamic Memory Allocation 8 / 35

CS19001:
Programming and
Data Structures

Laboratory

String,
Pointers,
Dynamic
Memory
Allocation
DRC, SD, SB;

CSE, IIT
Kharagpur

Tutorial:
Characters

Tutorial: Strings

Tutorial: Pointers

Dynamic Memory
Allocation

Assignments

Tutorial: Characters Tutorial: Strings Tutorial: Pointers Dynamic Memory Allocation Assignments

Reading a line of text

int main (){

char name [30],ch;

int i=0;

printf("Enter name: ");

while(ch!=’\n’)

{// terminates if user hit enter

ch=getchar ();

name[i]=ch;

i++;

}// inserting null character at end

name[i]=’\0’;

printf("Name: %s",name);

return 0;

}

DRC, SD, SB; CSE, IIT Kharagpur CS19001: Programming and Data Structures Laboratory String, Pointers, Dynamic Memory Allocation 9 / 35

CS19001:
Programming and
Data Structures

Laboratory

String,
Pointers,
Dynamic
Memory
Allocation
DRC, SD, SB;

CSE, IIT
Kharagpur

Tutorial:
Characters

Tutorial: Strings

Tutorial: Pointers

Dynamic Memory
Allocation

Assignments

Tutorial: Characters Tutorial: Strings Tutorial: Pointers Dynamic Memory Allocation Assignments

Better method

int main (){

char name [30];

printf("Enter name: ");

gets(name);

// Function to read string from user.

printf("Name: ");

puts(name);

// Function to display string.

return 0;

}

Enter name: Dennis Ritchie
Name: Dennis Ritchie

DRC, SD, SB; CSE, IIT Kharagpur CS19001: Programming and Data Structures Laboratory String, Pointers, Dynamic Memory Allocation10 / 35

CS19001:
Programming and
Data Structures

Laboratory

String,
Pointers,
Dynamic
Memory
Allocation
DRC, SD, SB;

CSE, IIT
Kharagpur

Tutorial:
Characters

Tutorial: Strings

Tutorial: Pointers

Dynamic Memory
Allocation

Assignments

Tutorial: Characters Tutorial: Strings Tutorial: Pointers Dynamic Memory Allocation Assignments

Passing Strings to Functions

void Display(char ch[]);

int main (){

char c[50];

printf("Enter string: ");

gets(c);

Display(c);

// Passing string c to function.

return 0;

}

void Display(char ch[]){

printf("String Output: ");

puts(ch);

}

DRC, SD, SB; CSE, IIT Kharagpur CS19001: Programming and Data Structures Laboratory String, Pointers, Dynamic Memory Allocation11 / 35

CS19001:
Programming and
Data Structures

Laboratory

String,
Pointers,
Dynamic
Memory
Allocation
DRC, SD, SB;

CSE, IIT
Kharagpur

Tutorial:
Characters

Tutorial: Strings

Tutorial: Pointers

Dynamic Memory
Allocation

Assignments

Tutorial: Characters Tutorial: Strings Tutorial: Pointers Dynamic Memory Allocation Assignments

Library functions

#include <stdio.h>

#include <string.h>

int main ()

{

char str1 [12] = "Hello";

char str2 [12] = "World";

char str3 [12];

int len ;

strcpy(str3 , str1);

printf("strcpy(str3 ,str1): %s\n",str3);

strcat(str1 , str2);

printf("strcat(str1 ,str2): %s\n",str1);

len = strlen(str1);

printf("strlen(str1) : %d\n", len);

return 0;

}

DRC, SD, SB; CSE, IIT Kharagpur CS19001: Programming and Data Structures Laboratory String, Pointers, Dynamic Memory Allocation12 / 35

CS19001:
Programming and
Data Structures

Laboratory

String,
Pointers,
Dynamic
Memory
Allocation
DRC, SD, SB;

CSE, IIT
Kharagpur

Tutorial:
Characters

Tutorial: Strings

Tutorial: Pointers

Dynamic Memory
Allocation

Assignments

Tutorial: Characters Tutorial: Strings Tutorial: Pointers Dynamic Memory Allocation Assignments

Result

strcpy(str3, str1) : Hello
strcat(str1, str2): HelloWorld
strlen(str1) : 10

do not forget to include string.h

DRC, SD, SB; CSE, IIT Kharagpur CS19001: Programming and Data Structures Laboratory String, Pointers, Dynamic Memory Allocation13 / 35

CS19001:
Programming and
Data Structures

Laboratory

String,
Pointers,
Dynamic
Memory
Allocation
DRC, SD, SB;

CSE, IIT
Kharagpur

Tutorial:
Characters

Tutorial: Strings

Tutorial: Pointers

Dynamic Memory
Allocation

Assignments

Tutorial: Characters Tutorial: Strings Tutorial: Pointers Dynamic Memory Allocation Assignments

A bit more about string manipulation

int strcmp (char s[], char t[]):
Returns 0 if the two strings are identical, a negative
value if s is lexicographically smaller than t (i.e., if s
comes before t in the standard dictionary order), and a
positive value if s is lexicographically larger than t.
Comparison is done with respect to ASCII values (A -
65, a - 95)

int strlen (char s[]):
Returns the length (the number of characters before the
first null character) of the string s.

DRC, SD, SB; CSE, IIT Kharagpur CS19001: Programming and Data Structures Laboratory String, Pointers, Dynamic Memory Allocation14 / 35

CS19001:
Programming and
Data Structures

Laboratory

String,
Pointers,
Dynamic
Memory
Allocation
DRC, SD, SB;

CSE, IIT
Kharagpur

Tutorial:
Characters

Tutorial: Strings

Tutorial: Pointers

Dynamic Memory
Allocation

Assignments

Tutorial: Characters Tutorial: Strings Tutorial: Pointers Dynamic Memory Allocation Assignments

Table of Contents

1 Tutorial: Characters

2 Tutorial: Strings

3 Tutorial: Pointers

4 Dynamic Memory Allocation

5 Assignments

DRC, SD, SB; CSE, IIT Kharagpur CS19001: Programming and Data Structures Laboratory String, Pointers, Dynamic Memory Allocation15 / 35

CS19001:
Programming and
Data Structures

Laboratory

String,
Pointers,
Dynamic
Memory
Allocation
DRC, SD, SB;

CSE, IIT
Kharagpur

Tutorial:
Characters

Tutorial: Strings

Tutorial: Pointers

Dynamic Memory
Allocation

Assignments

Tutorial: Characters Tutorial: Strings Tutorial: Pointers Dynamic Memory Allocation Assignments

Pointers

VARIABLE that stores memory address

void main (){

int i;

int *ptr; // pointer to an int

i = 4; /* store the value 4 into the

memory location associated with i */

ptr = &i; /* store the address of i

into the memory location associated

with ptr */

*ptr = *ptr + 1;

printf(%d\ n , i); //i=5

}

DRC, SD, SB; CSE, IIT Kharagpur CS19001: Programming and Data Structures Laboratory String, Pointers, Dynamic Memory Allocation16 / 35

CS19001:
Programming and
Data Structures

Laboratory

String,
Pointers,
Dynamic
Memory
Allocation
DRC, SD, SB;

CSE, IIT
Kharagpur

Tutorial:
Characters

Tutorial: Strings

Tutorial: Pointers

Dynamic Memory
Allocation

Assignments

Tutorial: Characters Tutorial: Strings Tutorial: Pointers Dynamic Memory Allocation Assignments

More examples

argument for scanf()

scanf("%d %d", &data1 , &data2);

Pass address of variable where you want result stored

Declarations: (all have same meaning)

int* x, y;

int *x, y;

int *x; int y;

The ∗ operator binds to the variable name, not the type

DRC, SD, SB; CSE, IIT Kharagpur CS19001: Programming and Data Structures Laboratory String, Pointers, Dynamic Memory Allocation17 / 35

CS19001:
Programming and
Data Structures

Laboratory

String,
Pointers,
Dynamic
Memory
Allocation
DRC, SD, SB;

CSE, IIT
Kharagpur

Tutorial:
Characters

Tutorial: Strings

Tutorial: Pointers

Dynamic Memory
Allocation

Assignments

Tutorial: Characters Tutorial: Strings Tutorial: Pointers Dynamic Memory Allocation Assignments

Relationship between Arrays and Pointers

An array name is essentially a pointer to the first element in
the array

char data [10];

/* data = addr where first element

is located = &data [0] */

char *cptr;

cptr = data; /* points to data [0] */

DRC, SD, SB; CSE, IIT Kharagpur CS19001: Programming and Data Structures Laboratory String, Pointers, Dynamic Memory Allocation18 / 35

CS19001:
Programming and
Data Structures

Laboratory

String,
Pointers,
Dynamic
Memory
Allocation
DRC, SD, SB;

CSE, IIT
Kharagpur

Tutorial:
Characters

Tutorial: Strings

Tutorial: Pointers

Dynamic Memory
Allocation

Assignments

Tutorial: Characters Tutorial: Strings Tutorial: Pointers Dynamic Memory Allocation Assignments

Pointers and Arrays

char data [10];

/* data = addr where first element

is located = &data [0] */

data &data[0]

(data + n) &data[n]

∗data data[0]

∗(data + n) data[n]

DRC, SD, SB; CSE, IIT Kharagpur CS19001: Programming and Data Structures Laboratory String, Pointers, Dynamic Memory Allocation19 / 35

CS19001:
Programming and
Data Structures

Laboratory

String,
Pointers,
Dynamic
Memory
Allocation
DRC, SD, SB;

CSE, IIT
Kharagpur

Tutorial:
Characters

Tutorial: Strings

Tutorial: Pointers

Dynamic Memory
Allocation

Assignments

Tutorial: Characters Tutorial: Strings Tutorial: Pointers Dynamic Memory Allocation Assignments

Pointers and Arrays

int main(void) {

int a[N] = {84, 67, 24, ...};

/*

&a[0] = a+0 = D000

&a[1] = a+1 = D004

&a[2] = a+2 = D008

a[0] = *a = 84

a[1] = *(a+1) = 67

a[2] = *(a+2) = 24

*/

return 0;

}

DRC, SD, SB; CSE, IIT Kharagpur CS19001: Programming and Data Structures Laboratory String, Pointers, Dynamic Memory Allocation20 / 35

CS19001:
Programming and
Data Structures

Laboratory

String,
Pointers,
Dynamic
Memory
Allocation
DRC, SD, SB;

CSE, IIT
Kharagpur

Tutorial:
Characters

Tutorial: Strings

Tutorial: Pointers

Dynamic Memory
Allocation

Assignments

Tutorial: Characters Tutorial: Strings Tutorial: Pointers Dynamic Memory Allocation Assignments

Passing Pointers as Function Arguments
Alter variables outside a function’s own scope

void swap(int *first , int *second);

int main (){

int a = 4, b = 7;

printf("pre -swap: a=%d, b=%d\n",a,b)

swap(&a, &b);

printf("post -swap: a=%d, b =%d\n",a,b)

return 0;

}

void swap(int *first , int *second){

int temp;

temp = *first;

*first = *second;

*second = temp;

}

DRC, SD, SB; CSE, IIT Kharagpur CS19001: Programming and Data Structures Laboratory String, Pointers, Dynamic Memory Allocation21 / 35

CS19001:
Programming and
Data Structures

Laboratory

String,
Pointers,
Dynamic
Memory
Allocation
DRC, SD, SB;

CSE, IIT
Kharagpur

Tutorial:
Characters

Tutorial: Strings

Tutorial: Pointers

Dynamic Memory
Allocation

Assignments

Tutorial: Characters Tutorial: Strings Tutorial: Pointers Dynamic Memory Allocation Assignments

Passing Pointers as Function Arguments

void swap(int *first , int *second);

int main (){

int a = 4, b = 7;

printf("pre -swap: a=%d, b=%d\n",a,b)

swap(&a, &b);

printf("post -swap: a=%d, b =%d\n",a,b)

return 0;

}

void swap(int *first , int *second){

int temp;

temp = *first;

*first = *second;

*second = temp;

}

The address-of operator (&) is used to pass the address of
the two variables rather than their values

DRC, SD, SB; CSE, IIT Kharagpur CS19001: Programming and Data Structures Laboratory String, Pointers, Dynamic Memory Allocation22 / 35

CS19001:
Programming and
Data Structures

Laboratory

String,
Pointers,
Dynamic
Memory
Allocation
DRC, SD, SB;

CSE, IIT
Kharagpur

Tutorial:
Characters

Tutorial: Strings

Tutorial: Pointers

Dynamic Memory
Allocation

Assignments

Tutorial: Characters Tutorial: Strings Tutorial: Pointers Dynamic Memory Allocation Assignments

Passing Array as Function Argument

#define N 64

int average(int b[], int n) {

int i, sum; // same as int *b

// receives the value D000 from main

for (i = 0; i < n; i++)

sum += b[i];

return sum / n;

}

int main(void) {

int a[N] = {84, 67, 24, ..., 89, 90};

printf("%d\n", average(a, N));

return 0; // passes &a[0] = D000

}

DRC, SD, SB; CSE, IIT Kharagpur CS19001: Programming and Data Structures Laboratory String, Pointers, Dynamic Memory Allocation23 / 35

CS19001:
Programming and
Data Structures

Laboratory

String,
Pointers,
Dynamic
Memory
Allocation
DRC, SD, SB;

CSE, IIT
Kharagpur

Tutorial:
Characters

Tutorial: Strings

Tutorial: Pointers

Dynamic Memory
Allocation

Assignments

Tutorial: Characters Tutorial: Strings Tutorial: Pointers Dynamic Memory Allocation Assignments

Advantage? working with subarray

#define N 64

int average(int b[], int n) {

int i, sum; // same as int *b

// receives the value D000 from main

for (i = 0; i < n; i++)

sum += b[i];

return sum / n;

}

int main(void) {

int a[N] = {84, 67, 24, ..., 89, 90};

printf("%d\n", average(a+5, 10));

return 0; // passes &a[0] = D000

}

compute average of a[5] through a[14]

DRC, SD, SB; CSE, IIT Kharagpur CS19001: Programming and Data Structures Laboratory String, Pointers, Dynamic Memory Allocation24 / 35

CS19001:
Programming and
Data Structures

Laboratory

String,
Pointers,
Dynamic
Memory
Allocation
DRC, SD, SB;

CSE, IIT
Kharagpur

Tutorial:
Characters

Tutorial: Strings

Tutorial: Pointers

Dynamic Memory
Allocation

Assignments

Tutorial: Characters Tutorial: Strings Tutorial: Pointers Dynamic Memory Allocation Assignments

Table of Contents

1 Tutorial: Characters

2 Tutorial: Strings

3 Tutorial: Pointers

4 Dynamic Memory Allocation

5 Assignments

DRC, SD, SB; CSE, IIT Kharagpur CS19001: Programming and Data Structures Laboratory String, Pointers, Dynamic Memory Allocation25 / 35

CS19001:
Programming and
Data Structures

Laboratory

String,
Pointers,
Dynamic
Memory
Allocation
DRC, SD, SB;

CSE, IIT
Kharagpur

Tutorial:
Characters

Tutorial: Strings

Tutorial: Pointers

Dynamic Memory
Allocation

Assignments

Tutorial: Characters Tutorial: Strings Tutorial: Pointers Dynamic Memory Allocation Assignments

Dynamic memory allocation

#include <stdio.h>

#include <stdlib.h>

int max(int a[], int c, int *b);

int main (){

int i, j, m, *a;

printf("enter number of elements\n");

scanf("%d",&i);

a=(int *) malloc(i * sizeof(int));

for(j=0;j<i;j++){

printf("enter element no. %d:",j);

scanf("%d", &a[j]);

}

m=max(a, i, &j); // next slide

printf("Max value is %d stored in a[%d]\n",m,j);

return 0;

}

DRC, SD, SB; CSE, IIT Kharagpur CS19001: Programming and Data Structures Laboratory String, Pointers, Dynamic Memory Allocation26 / 35

CS19001:
Programming and
Data Structures

Laboratory

String,
Pointers,
Dynamic
Memory
Allocation
DRC, SD, SB;

CSE, IIT
Kharagpur

Tutorial:
Characters

Tutorial: Strings

Tutorial: Pointers

Dynamic Memory
Allocation

Assignments

Tutorial: Characters Tutorial: Strings Tutorial: Pointers Dynamic Memory Allocation Assignments

Returning multiple values

int max(int *a, int i, int *j)

{

int k, max = -32767;

for (k=0; k<i; k++)

{

if (a[k]>max)

{

max=a[k];

*j=k;

}

}

return(max);

}

DRC, SD, SB; CSE, IIT Kharagpur CS19001: Programming and Data Structures Laboratory String, Pointers, Dynamic Memory Allocation27 / 35

CS19001:
Programming and
Data Structures

Laboratory

String,
Pointers,
Dynamic
Memory
Allocation
DRC, SD, SB;

CSE, IIT
Kharagpur

Tutorial:
Characters

Tutorial: Strings

Tutorial: Pointers

Dynamic Memory
Allocation

Assignments

Tutorial: Characters Tutorial: Strings Tutorial: Pointers Dynamic Memory Allocation Assignments

Table of Contents

1 Tutorial: Characters

2 Tutorial: Strings

3 Tutorial: Pointers

4 Dynamic Memory Allocation

5 Assignments

DRC, SD, SB; CSE, IIT Kharagpur CS19001: Programming and Data Structures Laboratory String, Pointers, Dynamic Memory Allocation28 / 35

CS19001:
Programming and
Data Structures

Laboratory

String,
Pointers,
Dynamic
Memory
Allocation
DRC, SD, SB;

CSE, IIT
Kharagpur

Tutorial:
Characters

Tutorial: Strings

Tutorial: Pointers

Dynamic Memory
Allocation

Assignments

Tutorial: Characters Tutorial: Strings Tutorial: Pointers Dynamic Memory Allocation Assignments

Programming Assignments
Complete and submit during lab

DRC, SD, SB; CSE, IIT Kharagpur CS19001: Programming and Data Structures Laboratory String, Pointers, Dynamic Memory Allocation29 / 35

CS19001:
Programming and
Data Structures

Laboratory

String,
Pointers,
Dynamic
Memory
Allocation
DRC, SD, SB;

CSE, IIT
Kharagpur

Tutorial:
Characters

Tutorial: Strings

Tutorial: Pointers

Dynamic Memory
Allocation

Assignments

Tutorial: Characters Tutorial: Strings Tutorial: Pointers Dynamic Memory Allocation Assignments

Assignment 1: [Variable-sized Strings]

Write a program that achieves the following functionality:

Write a function – storeString, that reads a string of
length at most 100 from the keyboard, and stores it in a
dynamically allocated array consuming the minimum required
memory for that string.

Create an array of 100 pointers that can be used to store the
strings created by the above function and use it to store and
print names of n persons. Here, n < 100 is the first input to
the program.

The second functionality should be implemented in the main

function. Note that all the n strings should be first entered by the

user and then printed together.

DRC, SD, SB; CSE, IIT Kharagpur CS19001: Programming and Data Structures Laboratory String, Pointers, Dynamic Memory Allocation30 / 35

CS19001:
Programming and
Data Structures

Laboratory

String,
Pointers,
Dynamic
Memory
Allocation
DRC, SD, SB;

CSE, IIT
Kharagpur

Tutorial:
Characters

Tutorial: Strings

Tutorial: Pointers

Dynamic Memory
Allocation

Assignments

Tutorial: Characters Tutorial: Strings Tutorial: Pointers Dynamic Memory Allocation Assignments

Assignment 2: [Name Database (contd. from
assign. 1)]

In continuation from assignment 1, implement the following
functionality:

Write a function int search(char *a[],char *q, int

n) that searches for string pointed to by q in the array of n
strings a. It should return the index i such that a[i] points to
the returned string that contains q. For example “IIT
Kharagpur” contains “T Khar”.

In the main function, after entering a set of names as in
assignment 1, allow the user to interactively search for a
given name and delete it from the list. After deleting the
searched name, print the list of remaining names. Note that,
you have to move pointers all the strings after the removed
string by one position.

DRC, SD, SB; CSE, IIT Kharagpur CS19001: Programming and Data Structures Laboratory String, Pointers, Dynamic Memory Allocation31 / 35

CS19001:
Programming and
Data Structures

Laboratory

String,
Pointers,
Dynamic
Memory
Allocation
DRC, SD, SB;

CSE, IIT
Kharagpur

Tutorial:
Characters

Tutorial: Strings

Tutorial: Pointers

Dynamic Memory
Allocation

Assignments

Tutorial: Characters Tutorial: Strings Tutorial: Pointers Dynamic Memory Allocation Assignments

Assignment 3: [Alliteration Detection]
Write a program that, given a poem as input, detects if there is an
alliteration, and prints the alliterative words. An example is:

”The fair breeze blew, the white foam flew,
The furrow followed free;”

You can use the following definition of alliteration:

The first letter of at least two consecutive words should be
the same.

After meeting the above criteria, all words starting with the
same character are part of the alliteration. In the example,
fair foam flew furrow followed free are all part of the
alliteration.

If there are more than one candidates satisfying the above
two requirements, report the one with the maximum number
of total words. In the above example breeze blew is not
reported.

DRC, SD, SB; CSE, IIT Kharagpur CS19001: Programming and Data Structures Laboratory String, Pointers, Dynamic Memory Allocation32 / 35

CS19001:
Programming and
Data Structures

Laboratory

String,
Pointers,
Dynamic
Memory
Allocation
DRC, SD, SB;

CSE, IIT
Kharagpur

Tutorial:
Characters

Tutorial: Strings

Tutorial: Pointers

Dynamic Memory
Allocation

Assignments

Tutorial: Characters Tutorial: Strings Tutorial: Pointers Dynamic Memory Allocation Assignments

Bonus Assignment: [Alliterative Rhyme
Detection]

Write a function that can detect whether two input words rhyme
in the alphabetic sense. For example, the words light and fight
rhyme in the alphabetic sense, while the words fight and kite don’t
rhyme in the alphabetic sense, but do rhyme in the phonetic sense.
Hint: portion of the word from the last vowel should be identical.

Using the above function, detect whether an input poem
paragraph is couplet-rhyming, end-rhyming, or not rhyming. A
couplet consists of two successive lines that rhyme. For example:

”The sky is bright, the stars do shine, (A)
Their golden glow is so divine.” (A)

”The breeze is soft, the night is cool, (B)
As ripples dance upon the pool.” (B)

DRC, SD, SB; CSE, IIT Kharagpur CS19001: Programming and Data Structures Laboratory String, Pointers, Dynamic Memory Allocation33 / 35

CS19001:
Programming and
Data Structures

Laboratory

String,
Pointers,
Dynamic
Memory
Allocation
DRC, SD, SB;

CSE, IIT
Kharagpur

Tutorial:
Characters

Tutorial: Strings

Tutorial: Pointers

Dynamic Memory
Allocation

Assignments

Tutorial: Characters Tutorial: Strings Tutorial: Pointers Dynamic Memory Allocation Assignments

Bonus Assignment: [Alliterative Rhyme
Detection] (Contd.)

End-rhyming poems have other types of rhyming lines at regular
intervals (e.g. ABAB or ABCB). For example:

”The waves crash hard upon the shore, (A)
The seagulls soar so high above, (B)

The tide will rise, then fall once more, (A)
A rhythm set by those we love.” (B)

If there are no rhyming words in the end, then the poem will be

called non-rhyming. Write a main function that takes lines of

poems as input and categorizes them into the above three

categories.

DRC, SD, SB; CSE, IIT Kharagpur CS19001: Programming and Data Structures Laboratory String, Pointers, Dynamic Memory Allocation34 / 35

CS19001:
Programming and
Data Structures

Laboratory

String,
Pointers,
Dynamic
Memory
Allocation
DRC, SD, SB;

CSE, IIT
Kharagpur

Tutorial:
Characters

Tutorial: Strings

Tutorial: Pointers

Dynamic Memory
Allocation

Assignments

Tutorial: Characters Tutorial: Strings Tutorial: Pointers Dynamic Memory Allocation Assignments

Thank You

DRC, SD, SB; CSE, IIT Kharagpur CS19001: Programming and Data Structures Laboratory String, Pointers, Dynamic Memory Allocation35 / 35

	Tutorial: Characters
	Tutorial: Strings
	Tutorial: Pointers
	Dynamic Memory Allocation
	Assignments

