
CS19001: Programming and Data Structures Laboratory

DRC, SD, SB, CSE, IIT Kharagpur

March 5, 2025

Iterative and Recursive Functions

Function

• A function is a self-contained program segment that

carries out some specific, well-defined task.

• main is a function.

• Program execution begins from main

• There can be multiple functions. They can appear in
any order.

• One function definition cannot be embedded within
another.

• A function will carry out when it is “called”

Function

• A function will process information passed to it

from the calling program

• Information is passed via special identifiers

called arguments or parameters

• The value is returned via the return statement

Function Definition

• data-type name (argument1, argument 2, ….

……. argument n)

• return expression; // expression is optional

• A function can return only one value

Function
long int fact(n)

int n;

{

int i;

long int prod = 1;

if (n > 1)

for (i =2; i <= n; ++i)

prod *= i;

return(prod)

}

Function

#include <stdio,h>

main()

{

int n;

long int fact(); // function declaration

printf(“\n Enter the number “);

scanf(“%d”, &n);

printf(“\n the factorial is %ld”, fact(n));

}

Recursion

• A process by which a function calls itself

repeatedly

– Either directly.

– X calls X.

– Or cyclically in a chain.

– X calls Y, and Y calls X.

• Used for repetitive computations in which

each action is stated in terms of a previous

result

– fact(n) = n * fact (n-1)

Recursive Function

• For a problem to be written in recursive form,

two conditions are to be satisfied:

– It should be possible to express the problem

in recursive form.

– The problem statement must include a

stopping condition

fact(n) = 1, if n = 0

= n * fact(n-1), if n > 0

Sample Program

int factorial (int n)

{

int value;

if (n == 0) // TERMINATING CONDITION

return 1;

else // this ‘else’ is optional

value = n*factorial(n-1); // RECURSIVE

// FACTORIAL CALCULATUION

return value; // FINAL VALUE RETURN

}

Programming Assignments
Complete and submit during lab

Assignment 1

1(a). Write a C function fact(n) to compute the factorial of “n”.
Read n from keyboard and print it’s factorial in the main program.

Write a program to compute the value of nCr by using the above
function fact(n).

Read n and r in the main program and print the inputs

(n and r) and the output (nCr).

1(b). Write a recursive C program to compute the value of nCr .

The value of n and r are read from keyboard. Print the result.

Hint: Try to write a recursive expression of nCr .

Assignment 2

2. Write a C function named Congruent() that takes three positive
integers a, b and n. Assume, n is non-zero but a and b can be
zero.

The function returns 1 if a (modulo n) = b (modulo n) and returns
0, if a (modulo n) ≠ b (modulo n)

Write a main program in C that reads an array of n number of
positive integers including zero. Use the function Congruent() and
find any 3 distinct pairs of integers (a, b) from the array in such
that,

a (modulo n) = b (modulo n).

(a, b) and (c, d) are distinct pairs if a (modulo n) ≠ c (modulo n).

Contd.

Assignment 2 Contd.

Print the input array and the output i.e. the three distinct pairs.

(Choose n properly so that you can get at least 3 pairs)

Example

Input array: [29, 5, 23, 8, 40, 32, 16]

Output: (29, 8), (5,40), (23,16)

(since, 29 modulo 7 = 8 modulo 7 = 1;

5 modulo 7 = 40 modulo 7 = 5 and

23 modulo 7 = 16 modulo 7 = 2)

Assignment 3

3. Partsum of an integer n is defined as a way of writing n as a
sum

1+1+1+1

1+1+2

1+3

2+2

4

Permuting the summands does not give a new partsum, e.g.

1+1+2 and 1+2+1 are treated as the same partsum.

Write a recursive C function to compute the number of partsums

of n.

In order to avoid repetitions, choose the summands in a non-

decreasing order. That is, if 1 and 2 are already chosen as

the previous summands, the next summand cannot be less

than 2. contd.

Assignment 3 contd.

Pass two arguments to your recursive function. The first

stands for the amount left to be balanced by summands

and the second stands for the largest summand chosen so

far.

Recursion stops when the first argument becomes 0.

Assignment 3 Contd.

Sample Output

Enter n: 5

Count of all partsums = 7

Enter n: 40

Count of all partsums = 37338

Enter n: 80

Count of all partsums = 15796476

Assignment 4 (Bonus)

Assignment 3 contd.

4(a). Repeat Assignment 3 with an additional constraint that no
summand is repeated in the partsum. For example

For integer n = 4, the output will be 3 (instead of 5) and they
are as follows

1 + 3

2 + 2

4

Modify the recursive function of Assignment 3 so that the
output will be the count of partsums without repetitions.

contd.

Assignment 4 Contd.

4(b). Modify the recursive function of Assignment 3 so that the it
counts the number of partsums having an odd number of
summands. For example,

n = 4, there are two partsums with odd number of summands

1 + 1 + 2

4

n = 5, there are four partsums with odd number of summands

1 + 1 + 1 + 1 +1

1+ 1 + 3

1 + 2 + 2

5

[Hint: Pass a 3rd argument to the function in order to pass the
information about how many summands have been chosen so
far. When the balance (1st argument) becomes zero, whether an
odd number of summands have been chosen so far.]

Thank You

