
FUNCTIONS
CS10003: PROGRAMMING AND DATA STRUCTURES

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 1

Introduction

Function
• A program segment that carries out a specific, well-defined task.
• Examples

• A function to find the gcd of two numbers
• A function to find the largest of n numbers

A function will carry out its intended task whenever it is called
• Functions may call other functions (or itself)
• A function may be called multiple times (with different arguments)

Every C program consists of one or more functions.
• One of these functions must be called “main”.
• Execution of the program always begins by carrying out the instructions in “main”.

Function Control Flow

void print_banner ()

{

 printf(“********\n”);

}

3

int main ()
{
 . . .
 print_banner () ;
 . . .
 print_banner () ;

}

int main ()
{
 …
 print_banner ();
 …
 print_banner ();

}

print_banner {

}

print_banner {

}

Code
Execution

If function A calls function B:
A : calling function / caller function
B : called function

Why Functions?
Functions allow one to develop a program in a modular fashion.

• Codes become readable
• Codes become manageable to debug and maintain

Write your own functions to avoid writing the same code segments multiple times
• If you check several integers for primality in various places of your code, just write a single

primality-testing function, and call it on all occasions

Use existing functions as building blocks for new programs
• Use functions without rewriting them yourself every time it is needed
• These functions may be written by you or by others (like sqrt(), printf())

Abstraction: Hide internal details (library functions)

4

#include <stdio.h>

/* Function to compute the area of a circle */
float myfunc (float r)
{ float a;
 a = 3.14159 * r * r;
 return a; /* return result */
}

main()
{
 float radius, area;

 scanf (“%f”, &radius);
 area = myfunc (radius);
 printf (“\n Area is %f \n”, area);
}

Use of functions: Area of a circle

Function definition

Function argument

Function call

#include <stdio.h>

/* Function to compute the area of a circle */
float myfunc (float r)
{ float a;
 a = 3.14159 * r * r;
 return a; /* return result */
}

main()
{
 float radius, area;

 scanf (“%f”, &radius);
 area = myfunc (radius);
 printf (“\n Area is %f \n”, area);
}

Use of functions: Area of a circle

Function definition

Function argument

Function call

• A called function processes information that is passed to it from the

calling function, and the called function may return a single value (result)

to the calling function.

• Information passed to the function via special identifiers called

arguments or parameters.

• The value is returned by the return statement.

7

Defining a Function
A function definition has two parts:

• The first line
• The body of the function

General syntax:
 return-value-type function-name (parameter-list)
 {
 declarations and statements
 }

The first line contains the return-value-type, the function name, and
optionally a set of comma-separated arguments enclosed in ().

• Each argument has an associated type declaration.
• The arguments are called formal arguments or formal parameters.

Example:

 float myfunc (float r)

 int gcd (int A, int B)

return value
type

#include <stdio.h>

/* Function to compute the area of a
circle */

float myfunc (float r)

{

 float a;

 a = 3.14159 * r * r;

 return a;

}

main()

{

 float radius, area;

 scanf (“%f”, &radius);

 area = myfunc (radius);

 printf (“\n Area is %f \n”, area);

}

Calling a function

8

• Called by specifying the function name and parameters in an
instruction in the calling function.

• When a function is called from some other function, the
corresponding arguments in the function call are called
actual arguments or actual parameters.

• The function call must include a matching actual parameter
for each formal parameter.

• Position of an actual parameters in the parameter list in the
call must match the position of the corresponding formal
parameter in the function definition.

• The formal and actual arguments would match in their data
types. Mismatches are auto-typecasted if possible.

• The actual parameters can be expressions possibly
involving other function calls (like f(g(x)+y)).

#include <stdio.h>

/* Function to compute the area of a
circle */

float myfunc (float r)

{

 float a;

 a = 3.14159 * r * r;

 return a;

}

main()

{

 float radius, area;

 scanf (“%f”, &radius);

 area = myfunc (radius);

 printf (“\n Area is %f \n”, area);

}

Function Prototypes: declaring a function

9

Usually, a function is defined before it is called.
• main() is usually the last function in the program written.
• Easy for the compiler to identify function definitions in a single scan through the file.

Some prefer to write the functions after main(). There may be functions that call each other.
• Must be some way to tell the compiler what is a function when compilation reaches a function call.
• Function prototypes are used for this purpose

• Only needed if function definition comes after a call to that function.

• Function prototypes are usually written at the beginning of a program, ahead of any functions (including main()).
• Prototypes must specify the types. Parameter names are optional (ignored by the compiler).
• Examples:

 int gcd (int , int);
 void div7 (int number);
• Note the semicolon at the end of the line.
• The parameter name, if specified, can be anything; but it is a good practice to use the same names as in the function

definition.

Example:

1
0

#include <stdio.h>

int sum(int, int);

int main()

{

 int x, y;

 scanf(“%d%d”, &x, &y);

 printf(“Sum = %d\n”, sum(x, y));

}

int sum (int a, int b)

{

 return a + b;

}

This program needs a function prototype or
function declaration since the function call
comes before the function definition.

Function prototype / declaration

Function call

Function definition

11

Return value
• A function can return a single value

Using return statement
• Like all values in C, a function return value has a type
• The return value can be assigned to a variable in the calling

function

int main()

{

 int x, y, s;

 scanf(“%d%d”, &x, &y);

 s = sum(x, y);

}

int sum (int a, int b)

{

 return a + b;

}

• Sometimes a function is not meant for returning anything

• Such functions are of type void

Example: A function which prints if a number is divisible
by 7 or not.

void div7 (int n)

{

if ((n % 7) == 0)

 printf (“%d divisible by 7”, n);

else

 printf (“%d not divisible by 7”, n);

return;

}

• The return type is void
• The return statement for void functions is optional at

the end

The return statement

1
2

In a value-returning function, return does two distinct
things:

• Specify the value returned by the execution of the
function.

• Terminate the execution of the called function and
transfer control back to the caller function.

A function can only return one value.

• The value can be any expression matching the return
type.

• It might contain more than one return statement.

In a void function:

• "return” is optional at the end of the function body.
• "return” may also be used to terminate execution of

the function explicitly before reaching the end.
• No return value should appear following “return”.

void compute_and_print_itax ()

{

 float income;

 scanf (“%f”, &income);

 if (income < 50000) {

 printf (“Income tax = Nil\n”);

 return; /* Terminates function execution */

 }

 if (income < 60000) {

 printf (“Income tax = %f\n”, 0.1*(income-50000));

 return; /* Terminates function execution */

 }

 if (income < 150000) {

 printf (“Income tax = %f\n”,0.2*(income-60000)+1000);

 return ; /* Terminates function execution */

 }

 printf (“Income tax = %f\n”,0.3*(income-150000)+19000);

}

Another Example: What is happening here?

1
3

int main()

{

 int numb, flag, j=3;

 scanf(“%d”,&numb);

 while (j <= numb) {

 flag = prime(j);

 if (flag == 0)

 printf(“%d is prime\n”, j);

 j++;

 }

 return 0;

}

int prime (int x)

{

 int i, test;

 i=2, test =0;

 while ((i <= sqrt(x)) && (test ==0))

 {

 if (x%i==0) test = 1;

 i++;

 }

 return test;

}

Tracking the flow of control

1
4

int main()
{
 int numb, flag, j=3;
 scanf(“%d”,&numb);
 printf(“numb = %d \n”,numb);
 while (j <= numb)
 {
 printf(“\nMain, j = %d\n”,j);
 flag = prime(j);
 printf(“Main, flag = %d\n”,flag);

 if (flag == 0) printf(“%d is prime\n”,j);
 j++;
 }
 return 0;
 }

int prime(int x)
{
 int i, test;
 i = 2; test = 0;

 printf(“In function, x = %d \n”,x);
 while ((i <= sqrt(x)) && (test == 0))
 {
 if (x%i == 0) test = 1;
 i++;
 }
 printf(“Returning, test = %d \n”,test);

 return test;
}

PROGRAM OUTPUT
5
numb = 5

Main, j = 3
In function, x = 3
Returning, test = 0
Main, flag = 0
3 is prime

Main, j = 4
In function, x = 4
Returning, test = 1
Main, flag = 1

Main, j = 5
In function, x = 5
Returning, test = 0
Main, flag = 0
5 is prime

Nested Functions
A function cannot be defined within another function. It can be called within another function.

• All function definitions must be disjoint.

Nested function calls are allowed.
• A calls B, B calls C, C calls D, etc.
• The function called last will be the first to return.

A function can also call itself, either directly or in a cycle.
• A calls B, B calls C, C calls back A.
• Called recursive call or recursion.

15

16

Example: main() calls ncr(), ncr() calls fact()

#include <stdio.h>

int ncr (int n, int r);
int fact (int n);

main()
{
 int i, m, n, sum=0;
 scanf (“%d %d”, &m, &n);

 for (i=1; i<=m; i+=2)
 sum = sum + ncr(n, i) ;

 printf (“Result: %d \n”, sum);
}

int ncr (int n, int r)

{

 return (fact(n)/fact(r)/fact(n-r));

}

int fact (int n)

{

int i, temp=1;

for (i=1; i<=n; i++)

 temp *= i;

return (temp);

}

Local variables
A function can define its own local variables.
The local variables are known (can be accessed) only within the function in which they are

declared.
• Local variables cease to exist when the function returns.
• Each execution of the function uses a new set of local variables.

Parameters are also local.

17

/* Find the area of a circle with

diameter d */

double circle_area (double d)

{

double radius, area;

radius = d/2.0;

area = 3.14*radius*radius;

return (area);

}

parameter

local variables

Revisiting nCr

18

int ncr (int n, int r)

{

 return (fact(n)/fact(r)/fact(n-r));

}

int fact (int n)

{

 int i, temp=1;

 for (i=1; i<=n; i++)

 temp *= i;

return (temp);

}

The n in ncr() and
the n in fact() are

different

Scope of a variable

19

• Part of the program from which the value of the variable can be used (seen).

• Scope of a variable - Within the block in which the variable is defined.
• Block = group of statements enclosed within { }

• Local variable – scope is usually the function in which it is defined.
• So two local variables of two functions can have the same name, but they are different

variables

• Global variables – declared outside all functions (even main).
• Scope is entire program by default, but can be hidden in a block if local variable of same

name defined
• You are encouraged to avoid global variables

What happens here?

20

#include <stdio.h>

int A; /* This A is a global variable */

void main()

{

 A = 1;

 myProc();

 printf ("A = %d\n", A);

}

void myProc()

{

 A = 2;

 /* other statements */

 printf ("A = %d\n", A);

 }

A = 2

A = 2

Scope of
global A

Local Scope replaces Global Scope

21

#include <stdio.h>
int A; /* This A is a global variable */
void main()
{
 A = 1;
 myProc();
 printf ("A = %d\n", A);
}

void myProc()
{
 int A = 2; /* This A is a local variable */

 /* other statements */
 /* within this function, A refers to the local A */

 printf ("A = %d\n", A);
 }

A = 1

A = 2

Scope of
local A

Scope of
global A

22

Parameter Passing

When the function is called, the value of the actual parameter is copied to the formal parameter

int main ()
{ . . .

double radius, a;
. . .
a = area(radius);
. . .

}

double area (double r)
{

return (3.14*r*r);
}

parameter passing

Parameter Passing by Value in C

23

• Used when invoking functions

Call by value / parameter passing by value
• Called function gets a copy of the value of the actual argument passed to the

function.
• Execution of the function does not change the actual arguments.

• All changes to a parameter done inside the function are done on the copy.
• The copy is removed when the control returns to the caller function.
• The value of the actual parameter in the caller function is not affected.

• The arguments passed may very well be expressions (example: fact(n-r)).

Call by reference
• Passes the address of the original argument to a called function.
• Execution of the function may affect the original argument in the calling function.
• Not directly supported in C, but supported in some other languages like C++.
• In C, you can pass copies of addresses to get the desired effect.

Parameter passing and return: 1

24

int main()

{

 int a=10, b;

 printf (“Initially a = %d\n”, a);

 b = change (a);

 printf (“a = %d, b = %d\n”, a, b);

 return 0;

}

int change (int x)

{

 printf (“Before x = %d\n”,x);

 x = x / 2;

 printf (“After x = %d\n”, x);

 return (x);

}

Initially a = 10
Before x = 10
After x = 5
a = 10, b = 5

Output

Parameter passing and return: 2

25

int main()

{

 int x=10, b;

 printf (“M: Initially x = %d\n”, x);

 b = change (x);

 printf (“M: x = %d, b = %d\n”, x, b);

 return 0;

}

int change (int x)

{

 printf (“F: Before x = %d\n”,x);

 x = x / 2;

 printf (“F: After x = %d\n”, x);

 return (x);

}

M: Initially x = 10
F: Before x = 10
F: After x = 5
M: x = 10, b = 5

Output

Parameter passing and return: 3

26

int main()

{

 int x=10, y=5;

 printf (“M1: x = %d, y = %d\n”, x, y);

 interchange (x, y);

 printf (“M2: x = %d, y = %d\n”, x, y);

 return 0;

}

void interchange (int x, int y)

{

 int temp;

 printf (“F1: x = %d, y = %d\n”, x, y);

 temp= x; x = y; y = temp;

 printf (“F2: x = %d, y = %d\n”, x, y);

}

M1: x = 10, y = 5
F1: x = 10, y = 5
F2: x = 5, y = 10
M2: x = 10, y = 5

How do we write an interchange function?
(will see later)

Output

Header files and preprocessor

27

Header Files
Header files:

• Contain function declarations / prototypes for library functions.
• <stdlib.h> , <math.h> , etc.
• Load with: #include <filename>
• Example: #include <math.h>
• The function definitions of library functions are in the actual libraries (e.g., math library).

We can also create custom header files:
• Create file(s) with function prototypes / declarations.
• Save as filename.h (say).
• Load in other files with #include "filename.h"

28

C preprocessor

29

• Statements starting with # are handled by the C preprocessor
• May be done by the compiler or by a separate program
• Preprocessing is done before the actual compilation process begins

• The C preprocessor is basically a text substitution tool
• For instance, #include command is replaced by the contents of the specified header file
• Such commands are called preprocessor directives

• We will study another preprocessor directive: #define
• There are more such directives – see book

30

#define: Macro definition

 Preprocessor directive in the following form:
 #define string1 string2

• Replaces string1 by string2 wherever it occurs before compilation. For example,
 #define PI 3.1415926

#define PI 3.1415926

main()

{

 float r = 4.0, area;

 area = PI * r * r;

}

main()

{

 float r = 4.0, area;

 area = 3.1415926 * r * r;

}

macro pre-processing

#define with arguments
#define statement may be used with arguments.

• Example: #define sqr(x) x*x
• How will macro substitution be carried out?

r = sqr(a) + sqr(30); 🡪 r = a*a + 30*30;
r = sqr(a+b); 🡪 r = a+b*a+b;

• The macro should better be written as:

#define sqr(x) (x)*(x)
r = sqr(a+b); 🡪 r = (a+b)*(a+b);

• Is this still correct?
r = c / sqr(a+b); 🡪 r = c / (a+b)*(a+b);

Macros are not functions. They are literally substituted without evaluation.

31

WRONG?

Practice Problems

32

No separate problems needed.
• Look at everything that you did so far, such as finding sum, finding average, counting something, checking if

something is true or false (“ Is there an element in array A such that….) etc. in which the final answer is one
thing only (like sum, count, 0 or 1,…).

• Then for each of them, rather than doing it inside main (as you have done so far), write it as a function with
appropriate parameters, and call from main() to find and print.

• Normally, read and print everything from main(). Do not read or print anything inside the function. This will
give you better practice.

• However, you can write simple functions for printing an array.

