
INDIAN INSTITUTE OF TECHNOLOGY
KHARAGPUR

Stamp / Signature of the Invigilator

EXAMINATION: Mid Semester (Autumn 2024-25) Answer all (Total marks: 60, Duration: 2 hours)

Roll Number Section Name

Subject Number C S 1 0 0 0 3 Subject Name Programming and Data Structures

Department / Center of the Student Additional sheets

Important Instructions and Guidelines for Students

1. You must occupy your seat as per the Examination Schedule/Sitting Plan.

2. Do not keep mobile phones or any similar electronic gadgets with you even in the switched off mode.

3. Loose papers, class notes, books or any such materials must not be in your possession, even if they are irrelevant to the
subject you are taking examination.

4. Data book, codes, graph papers, relevant standard tables/charts or any other materials are allowed only when instructed by
the paper-setter.

5. Use of instrument box, pencil box and non-programmable calculator is allowed during the examination. However, exchange
of these items or any other papers (including question papers) is not permitted.

6. Write on the answer-script and do not tear off any page. For rough work, use last page(s) of the answer script and white
spaces around the questions. Report to the invigilator if the answer script has torn or distorted page(s).

7. It is your responsibility to ensure that you have signed the Attendance Sheet. Keep your Admit Card/Identity Card on the
desk for checking by the invigilator.

8. You may leave the examination hall for wash room or for drinking water for a very short period. Record your absence from
the Examination Hall in the register provided. Smoking and the consumption of any kind of beverages are strictly prohibited
inside the Examination Hall.

9. Do not leave the Examination Hall without submitting your answer script to the invigilator. In any case, you are not allowed
to take away the answer script with you. After the completion of the examination, do not leave the seat until the invigilators
collect all the answer scripts.

10. During the examination, either inside or outside the Examination Hall, gathering information from any kind of sources or
exchanging information with others or any such attempt will be treated as ‘unfair means’. Do not adopt unfair means and
do not indulge in unseemly behavior.

Violation of any of the above instructions may lead to severe punishment.

Signature of the Student

To be filled in by the examiner

Question No.: 1 2 3 4 5 6 7 8 9 10

Marks Obtained

Question No.: 11 12 13 14 15 16 17 18 19 20 Total

Marks Obtained

Marks obtained (in words) Signature of the Examiner Signature of the Scrutineer

1. The end of this question paper is marked by END

2. Answer all questions.

3. Write your answers in the specified blanks, using pen only.

4. You may do Rough Work in the designated areas or any white space, as long as it does not
encroach or interfere with your answers.

5. If you use Extra Sheets for rough work, do not submit them.

1. Answer the following questions. 1× 10 = 10 marks

(a) Which one among the following data types takes the
least space in memory and which one the most?
char, int, long int, float, long double

Answer: char, long double

(b) float z = 0.1225e2;

What’s the smallest positive integer that should be
multiplied with z so that the result is an integer?

Answer: 4

(c) Write the value of the expression a == ((a*b+1 <

c)&&(a+b==c)), where a = 1, b = 2, c = 3.
Answer: 0

(d) Write the value of the expression (a&b)&(c&17),
where a = 1, b = 2, c = 3.

Answer: 0

(e) Write the value of the expression (a|b)&(c|17),
where a = 1, b = 2, c = 3.

Answer: 3

(f) Write the tab character and the null character. Answer: ’\t ’, ’\0’

(g) Which of the following is not a function of string.h?
strlen, strcpy, strman, strncmp

Answer: All except strman

(h) How many element-to-element comparisons are
enough to find the largest among 1024 numbers?

Answer: 1023

(i) How many multiplications are enough to compute
the value of x1024, where x is a real number in [0, 1]
(without using the math library)?

Answer: 10

(j) Which one runs faster between the recursive function
and the iterative function for computing the value
of n! ? (n is a large positive integer)

Answer: iterative

2. For the following mathematical expressions, write their corresponding expressions in
C language. For example, the expression x2 + 0.1x is written as x*x + 0.1*x in C language.
Assume that x > 0 and is declared as a variable of type double. You may use functions from
the math.h library. 1× 5 = 5 marks

(a) 1.23x + x/1.23 Answer: 1.23 * x + x / 1.23;

(b) x1.23 + (1.23)x Answer: pow(x, 1.23) + pow(1.23, x);

(c)
√

1 +
√
x Answer: sqrt(1 + sqrt(x));

(d) log(x) + ex + e−x Answer: log(x) + exp(x) + exp(-x);

(e) (sin(x))x + cos(x) Answer: pow(sin(x), x) + cos(x);

1

3. A subarray is a contiguous portion of an array; i.e., it consists of elements from the original
array that are adjacent to each other and appear in the same order as they do in the original
array. Here is a function to find all contiguous subarrays of an array a[] that sum up to a
given target sum t. For example, with t= 6, the array [-2 3 5 1 3] has two subarrays:
[-2, 3, 5] and [5, 1]. Fill up the blanks. 1× 5 = 5 marks

1 void findSubarraysWithSum(int a[], int n, int t) {

2 for (int start = 0; start < n; start++) { // n = number of elements

3 int current_sum = 0;

4 for (int end = __________________; end < n; end++) {

5

6 current_sum += ________________;

7

8 if (_______________________________) {

9 printf("Subarray: [");

10 for (int i = start; ______________; i++) {

11

12 printf("%d", _____________);

13 if (i < end) printf(", ");

14 }

15 printf("]\n");

16 }

17 }

18 }

19 }

Answer Full code: contiguousSubarraysWithTargetSum.c

start

a[end]

current_sum == t

i <= end

a[i]

Space for rough work

2

4. Two numbers are co-primes if their greatest common divisor (GCD) is 1. Here is a code that
takes a positive integer n as input and prints each pair of co-primes that occur in [2, n],
exactly once.
For example, if n = 3, it prints (2, 3);
if n = 4, it prints (2, 3) and (3, 4);
if n = 5, it prints (2, 3), (2, 5), (3, 4), (3, 5), and (4, 5);
if n = 12, it prints (2, 3), (2, 5), (2, 7), (2, 9), (2, 11), (3, 4), . . ., (11, 12).
Fill up the blanks. 1× 7 = 7 marks

1 #include <stdio.h>

2

3 int gcd(int a, int b) {

4 int temp;

5 while (b != 0) {

6

7 ___________________________;

8

9 ___________________________;

10

11 ___________________________;

12 }

13 return a;

14 }

15

16 int main() {

17 int n, i, j;

18 printf("Enter a positive integer n: ");

19 scanf("%d", &n);

20

21 for (i = 2; _______________; i++){

22

23 for (j = _____________; ______________; j++){

24

25 if (_________________){ // function call

26

27 printf("(%d, %d) ", i, j); // Co-prime pairs

28 }}}

29 return 0;

30 }

Answer Full code: co-primes.c

temp = b;

b = a % b;

a = temp;

i <= n

j = i + 1

j <= n

gcd(i, j) == 1

Space for rough work

3

5. Three or more points are said to be collinear if they all lie on the same straight line. Here is
a code that takes as input an integer n, followed by the coordinates of n points, and checks
if all points are collinear. Since all points have integer coordinates, the code doesn’t require
math.h. It includes a user-defined function areCollinear that checks if a triangle formed
by any three points has a non-zero area. Note that the function areCollinear calls another
function twiceArea, which returns zero if and only if the three points taken as argument are
collinear.

The main() function handles the input and calls areCollinear to determine if all points are
collinear. Fill up the blanks. 1× 8 = 8 marks

1 #include <stdio.h>

2

3 /* returns twice the area of the triangle

4 with vertices (x1,y1),(x2,y2),(x3,y3) */

5 int twiceArea(int x1, int y1, int x2, int y2, int x3, int y3) {

6 return x1*(y2-y3)+x2*(y3-y1)+x3*(y1-y2);

7 }

8

9 int areCollinear(int n, int x[], int y[]) {

10

11 for (int i = 0; _______________________; i++) {

12

13 for (int j = _____________ ; j < ______________; j++) {

14

15 for (int k = ____________; k < _____________; k++) {

16

17 int t = twiceArea(x[i], y[i], x[j], y[j], x[k], y[k]);

18

19 if (____________________) return 0; // Points are not collinear

20 }

21 }

22 }

23 return 1; // All points are collinear

24 }

25

26 int main() {

27 int n;

28 printf("Enter the number of points: ");

29 scanf("%d", &n);

30 int x[n], y[n]; // arrays to store the coordinates of the points

31

32 printf("Enter the coordinates of the points:\n");

33 for (int i = 0; i < n; i++){

34

35 scanf("%d %d", _____________, ______________);

36 }

37 if (areCollinear(n, x, y))

38 printf("All points are collinear.\n");

39 else

40 printf("The points are not all collinear.\n");

41 return 0;

42 }

4

Answer Full code: collinearity-nPoints.c

i < n - 2

j = i + 1; j < n - 1

k = j + 1; k < n

t != 0

&x[i], &y[i]

5

Space for rough work

6

6. An alphanumeric string is made of English letters and digits. Let s[] and t[] be two
alphanumeric strings of length m and n respectively, with m ≥ n. The string t[] is said to be a
substring of the string s[] if and only if there exists an integer k, where 0 ≤ k ≤ m− n, such
that t[0] = s[k], t[1] = s[k+1], . . . , t[m-1] = s[k+m-1]. A string is palindromic if it
reads the same forward and backward. For example, abba is even-length palindromic, while
ababa is odd-length palindromic. The following code takes an alphanumeric string s[] as input
and finds its longest palindromic substring t[]. Fill up the blanks. 1× 10 = 10 marks

1 #include <stdio.h>

2 #include <string.h>

3

4 void findLongestPalindrome(char s[], char t[]) {

5 int n = strlen(s), maxLength = 1, start = 0, low, high;

6 for (int i = 1; i < n; i++) {

7 // Find the longest even-length palindrome centered at s[i-1] and s[i]

8 low = i - 1; high = i;

9

10 while (_____________ >=0 && ____________ < n && ___________________) {

11

12 if (_________________> maxLength) {

13 start = low;

14 maxLength = high - low + 1;

15 }

16 low--; high++;

17 }

18

19 // Find the longest odd-length palindrome centered at s[i]

20 low = i - 1; high = i + 1;

21

22 while (_____________ >=0 && ______________ < n && __________________) {

23

24 if (__________________________> maxLength) {

25 start = low;

26 maxLength = high - low + 1;

27 }

28 low--; high++;

29 }

30 }

31

32 // Copy the longest palindromic substring to t[]

33 strncpy(t, s + start, maxLength);

34

35 t[maxLength] = ________________;

36 }

37

38 int main() {

39 char s[101], t[101];

40 printf("Enter an alphanumeric string (max 100 characters): ");

41 scanf("%s", s);

42 findLongestPalindrome(__________________);

43 printf("Longest palindromic substring: %s\n", _______);

44 return 0;

45 }

7

Answer Full code: longestPalindromicSubstring.c

low >= 0 && high < n && s[low] == s[high]

high - low + 1 > maxLength

low >= 0 && high < n && s[low] == s[high]

high - low + 1 > maxLength

’\0’

s, t

t

Space for rough work

8

7. The following code uses recursion to generate and print each n-digit number (as a string)
consisting of the digits 1, 2, and 3 (as characters). Assume that 1 ≤ n ≤ 10.
For example, if n = 2, it generates 11, 12, 13, 21, 22, 23, 31, 32, 33;
if n = 3, it generates 111, 112, 113, 121, . . . , 323, 331, 332, 333.
Fill up the blanks. 10 marks

1 #include <stdio.h>

2

3 void generateNumbers(char number[], int n, int current_digit) {

4 if (current_digit == n) { // Base case

5

6 number[n] = _______________; // Null-terminate the string [1 mark]

7 printf("%s\n", number);

8 return;

9 }

10

11 for (int i = 1; _______________; __________) { // 1.5 + 1.5 marks

12 number[current_digit] = i + ’0’; // Convert digit to character

13

14 __; // recursive call

15 } // [3 marks]

16 }

17

18 int main() {

19 int n;

20 char number[11]; // Array to store the n-digit number as a string

21 printf("Enter the value of n (1 to 10): ");

22

23 scanf("%d", _____________); // 1 mark

24

25 generateNumbers(number, _______, ___________________________); // 2 marks

26 return 0;

27 }

Answer Full code: generateNumbersDigits-123.c

’\0’

i <= 3; i++

generateNumbers(number, n, current_digit + 1)

&n

n, 0

Space for rough work

9

8. The following code dynamically allocates memory for an array of integers. Initially, it allocates
for 10 elements. It allows the user to enter nonzero elements into the array, and stops entering
when the user enters 0. If the array becomes full and the user wants to add more, it resizes
the array by doubling its size using realloc. Fill up the blanks. 1× 5 = 5 marks

1 #include <stdio.h>

2 #include <stdlib.h>

3

4 int main() {

5 int *arr;

6 int size = 10; // Initial size of the array

7 int count = 0; // Number of elements in the array

8 int input;

9

10 // Dynamically allocate memory for the array

11 arr = (int *)malloc(size * sizeof(int));

12

13 if (_________________________) {

14

15 printf("Memory allocation failed.\n"); return 1;

16 }

17

18 printf("Enter integers (enter 0 to stop):\n");

19 while (1) {

20 scanf("%d", &input);

21 if (input == 0)

22 break;

23 if (_______________________________________) { // resize it

24 size *= 2;

25 arr = (int *)realloc(___________________________________);

26

27 if (__________________________________) {

28

29 printf("Memory reallocation failed.\n"); return 1;

30 }

31 } // resizing completed

32

33 arr[count] = input; count += _______________;

34 } // end while

35 free(arr);

36 return 0;

37 }

Answer Full code: reallocDynMem1D.c

arr == NULL

count == size

arr, size * sizeof(int)

arr == NULL

1

END

10

Space for rough work

11

