

 High Performance Parallel Programming

Week 2 7 August

8 August Tutorial 1(Divergence)

Week 3 21 August

22 August Tutorial 2(Reduction)

Assignment 1 (Shared
Memory)

Week 4 28 August

29 August Tutorial 3(Fusion Coarsening) Assignment 2 (Reduction)

Week 5 4 September Assignment 3(Convolution
Operation)

Week 6 11 September

12 September

 Tutorial 1

1) Correct statement for allocation of memory chunk for 1024 floating point data
element in GPU device is (Assume mem_chunk is device pointer):

A. cudaMalloc((void **)&mem_chunk, 1024*sizeof(float))
B. cudaMalloc((void **)&mem_chunk, 1024)
C. cudaMalloc((float **)&mem_chunk, 1024*sizeof(float))
D. cudaMalloc((float **)&mem_chunk, 1024)

Ans: A

2) Consider the following declaration of variable in CUDA kernel:
​ __device__ int myvariable

Which of the following statement is TRUE:

A.​ The lifetime of myvariable is limited to kernel
B.​ The variable will be stored in global memory of GPU
C.​ The variable will be stored in shared memory of GPU
D.​ The scope of myvariable is limited to block

Answer: B

3) Consider a vector addition kernel launch vectorAdd<<<dim3(16, 8), dim3(32,
16)>>>(d_A, d_B, d_C, n);

What does the following CUDA kernel launch configuration imply:
A. 128 threads per block and 128 blocks in the grid.​
B. 256 threads per block and 128 blocks in the grid.​
C. 512 threads per block and 2048 blocks in the grid.​
D. 512 threads per block and 128 blocks in the grid.

Ans: D
Solution:
Total number of blocks in the grid :16 * 8 = 128
Total number of threads in each block:32 * 16 =512

4) Consider the following kernel snippet.

__global__ void kernel1(float *A)
{
​ int tid = threadIdx.x;
​ int gid = blockIdx.x * blockDim.x + threadIdx.x;

int loop_bound = threadIdx.x / WARP_SIZE;
​ if(tid/WARP_SIZE)
 {

​ for(i=0;i<loopbound;i++)
​ {

 A[gid]++;
}

}
}
Consider three different GPU architectures - A1 where WARP_SIZE is 8; A2
where WARP_SIZE is 16 and A3 where WARP_SIZE is 32. Match and pair the
following columns of statements.

i. A1 ​​
ii A2​ ​ ​ a. kernel exhibits divergent behaviour​
iii A3​​ ​ b. kernel does not exhibit divergent behaviour

Select the correct option from the following.

A.​i -> a, ii ->b, iii->b
B.​ i -> b, ii ->a, iii->b
C.​ i -> b, ii ->b, iii->b
D.​i -> a, ii ->b, iii->a

Correct Answer: C

Detailed answer: The range of values for tid is [0...31] irrespective of the warp size
of the architecture. No matter what the warp size is, it is evident from the
conditional statement that threads in a warp will evaluate tid/WARP_SIZE to
either a zero or non-zero value. For A1, there are 4 warps for a thread block of size
32, where the 1st warp containing thread ids [0,..,7] will evaluate the conditional
statement to a zero value and the remaining warps will evaluate the statement to a
non-zero value. Similar behaviour may be observed for the remaining architectures
as well.

5) Consider a hypothetical GPU architecture where the warp size is 16 and a kernel
program which is launched with a configuration where the total number of threads
in a thread block is 32. The total number of warps launched per thread block is thus
2. Consider the following conditional statements in the kernel.

i. if(threadIdx.x <16)
ii. if(threadIdx.x %2)
iii. if(threadIdx.x %32)
iv. if(threadIdx.x < 8)

 Which of the following options is correct?

A.​All conditional branches (i)-(iv) are divergent for all warps
B.​Conditional branch (i) is not divergent for warp 0
C.​Conditional branch (ii) is divergent for only warps 0
D.​Conditional branch (iv) is divergent for both warp 0 and warp 1

 Correct Answer: B

Solution

thread ids in warp 0: 0-15
thread ids in warp 1: 16-31

One can observe that all threads in warp 0 can satisfy threadIdx.x < 16

6) Consider a kernel processing a 2D matrix of dimensions 1024x1024 where
each thread is assigned to perform an operation on a single element of the matrix.
The kernel is launched with the following grid and block configurations: <a,32,2>

blocks of <32,b,2>. For a hypothetical GPU architecture where the maximum
number of threads in a block is 512, what are the values of a and b? Select the
correct option from below.

A.​a= 16, b=8
B.​ a=4, b =32
C.​ a=32, b=8
D.​None of these

Correct Answer: C

Solution

For b=4, number of threads in a block is 32*8*2=512 which satisfies the constraint
in the given question. Setting a=32, we ensure that a total of (32*32*2) * 512 =
1024*1024 threads are launched for processing the 1024x1024 matrix.

7) Consider the following kernel processing A which is a 1D array of 2048
elements on a GPU architecture where the warp size is 16. The kernel is launched
with a configuration of <64,1,1> blocks of <32,1,1> threads. Assume each
element of A is initialized to 0.

__global__ void kernel1(float *A)
{
​ int tid = threadIdx.x;
​ int gid = blockIdx.x * blockDim.x + threadIdx.x;

int loop_bound = threadIdx.x / 8;
​ if(tid%2)
 {

​ for(i=0;i<loopbound;i++)
​ {

 A[gid]++;
}

}
}

After the execution of the above program, what would be the value of A[1035]?

A.​0
B.​1
C.​2
D.​4

Answer: B

For gid = 1035, the value of tid is 1035%32=11. The kernel thus enters the body of
the conditional statement. The value of loopbound is 11 / 8 = 1 and thus A[1035] is
incremented to 1.

8) Consider the following piece of divergent code:

__global__ void kernel(int *a, int *b, int *x, int *y){

int i = threadIdx . x + blockDim . x * blockIdx . x ;
if (a[i]==b[i])

++x;
else

++y;
}

The above operations can be rewritten to avoid branch divergence as:

A.​
__global__ void kernel(int *a, int *b, int *x, int *y){

int i = threadIdx . x + blockDim . x * blockIdx . x ;
if (a[i]==b[i])

++x;
 if (a[i] != b[i])

++y;
}

B.​
__global__ void kernel(int *a, int *b, int *x, int *y){

int i = threadIdx . x + blockDim . x * blockIdx . x ;
if (a[i]==b[i])

++x;
else if (a[i] != *b[i])

++y;
}

C.​
__global__ void kernel(int *a, int *b, int *x, int *y){

int i = threadIdx . x + blockDim . x * blockIdx . x ;
x += (a[i] ==b[i]);
y += (a[i] !=b[i]);

}

D.​
__global__ void kernel(int *a, int *b, int *x, int *y){

int i = threadIdx . x + blockDim . x * blockIdx . x ;
 ​ x += (a[i] !=b[i]);

y += (a[i] ==b[i]);
}

Ans: C

