1 Closure Properties

Closure Properties

Recall that we can carry out operations on one or more languages to obtain a new language

Very useful in studying the properties of one language by relating it to other (better under-
stood) languages

Most useful when the operations are sophisticated, yet are guaranteed to preserve interesting
properties of the language.

Today: A variety of operations which preserve regularity
— i.e., the universe of regular languages is closed under these operations
Definition 1. Regular Languages are closed under an operation op on languages if

Ly, Ly,...L, regular = L =op(Ly,Ls,...Ly,) is regular

1.1 Boolean Operators

Operations from Regular Expressions

Proposition 2. Regular Languages are closed under U, o and *.
Proof. (Summarizing previous arguments.)
e Ly, Ly regular = 3 regexes Ry, Ry s.t. L1 = L(Ry) and Ly = L(R»).

— = L1ULy=L(RiURy) = Lj U Ly regular.
— = LjoLy=L(Ry0oRy) = Ljo Ly regular.
— = L} =L(R}) = Lj regular. O

Closure Under Complementation

Proposition 3. Regular Languages are closed under complementation, i.e., if L is reqular then
L =X%*\ L is also regular.

Proof. e If L is regular, then there is a DFA M = (Q, X, d, qo, F') such that L = L(M).
e Then, M = (Q,%,6,q0,Q \ F) (i.e., switch accept and non-accept states) accepts L. O

What happens if M (above) was an NFA?
Closure under N

Proposition 4. Regular Languages are closed under intersection, i.e., if L1 and Lo are reqular
then L1 N Ly is also reqular.

Proof. Observe that L1 N Ly = L;ULs. Since regular languages are closed under union and
complementation, we have

e L, and L, are regular

e L ULy is regular

e Hence, L; N Ly = Ly U Ly is regular.]

Is there a direct proof for intersection (yielding a smaller DFA)?
Cross-Product Construction
Let My = (Q1,%,01,q1, F1) and My = (Q2, %, d2, q2, F») be DFAs recognizing L; and Ls, respec-
tively.

Idea: Run M; and My in parallel on the same input and accept if both M7 and My accept.

Consider M = (Q, %, 6, qo, F') defined as follows

* Q=Q1xQ2

® qo = (q1,92)

* 5({p1,p2),a) = (01(p1, a), 62(p2, a))
o '=F x Fy

M accepts L1 N Ly (exercise)
What happens if M; and My where NFAs? Still works! Set 6({p1, p2),a) = d1(p1,a) x d2(p2, a).
An Example

1.2 Homomorphisms

Homomorphism

Definition 5. A homomorphism is function h : ¥X* — A* defined as follows:
e h(e) =€ and for a € ¥, h(a) is any string in A*

e For a =ajaz...an, € ¥* (n>2), h(a) = h(a1)h(az) ... h(ay).

e A homomorphism h maps a string a € ¥* to a string in A* by mapping each character of a
to a string h(a) € A*

e A homomorphism is a function from strings to strings that “respects” concatenation: for any
z,y € ¥*, h(zy) = h(z)h(y). (Any such function is a homomorphism.)

Ezample 6. h:{0,1} — {a,b}* where h(0) = ab and h(1) = ba. Then h(0011) = ababbaba

Homomorphism as an Operation on Languages

Definition 7. Given a homomorphism A : ¥* — A* and a language L C ¥*, define h(L) =
{h(w) |w e L} C A*.

Ezample 8. Let L = {0™1" |n > 0} and h(0) = ab and h(1) = ba. Then h(L) = {(ab)"(ba)™ |n > 0}

Proposition 9. For any languages Ly and La, the following hold: h(Ly U L2) = h(L1) U h(L2);
h<L1 e} Lg) = h(Ll) o} h(Lg), and h(LT) = h(Ll)*

Proof. Left as exercise. O

Closure under Homomorphism

Proposition 10. Regular languages are closed under homomorphism, i.e., if L is a regular language
and h is a homomorphism, then h(L) is also regular.

Proof. We will use the representation of regular languages in terms of regular expressions to argue
this.

e Define homomorphism as an operation on regular expressions
e Show that L(h(R)) = h(L(R))
e Let R be such that L = L(R). Let R’ = h(R). Then h(L) = L(R'). O

Homomorphism as an Operation on Regular Expressions

Definition 11. For a regular expression R, let h(R) be the regular expression obtained by replacing
each occurence of a € ¥ in R by the string h(a).

Ezample 12. If R = (0U1)*001(0U1)* and h(0) = ab and h(1) = be then h(R) = (abUbc)* ababbe(abU
be)*

Formally h(R) is defined inductively as follows.

h(0) =0 h(R1Rz) = h(R1)h(R2)
h(e) =€ h(R1 U Ry) = h(R2) U h(Rg)
h(a) = h(a) h(R*) = (h(R))"

Proof of Claim

Claim
For any regular expression R, L(h(R)) = h(L(R)).
Proof. By induction on the number of operations in R

e Base Cases: For R = € or {), h(R) = R and h(L(R)) = L(R). For R = a, L(R) = {a} and
h(L(R)) = {h(a)} = L(h(a)) = L(h(R)). So claim holds.

e Induction Step: For R = R; U Ry, observe that h(R) = h(R;) U h(R2) and h(L(R)) =
h(L(R1) UL(R2)) = h(L(R1)) U h(L(R2)). By induction hypothesis, h(L(R;)) = L(h(R;))
and so h(L(R)) = L(h(R1) U h(Rz2))

Other cases (R = R1 Ry and R = RY) similar. O

1.3 Inverse Homomorphism

Inverse Homomorphism

Definition 13. Given homomorphism h : ¥* — A* and L C A*, h™}(L) = {w € ¥* | h(w) € L}

h~=Y(L) consists of strings whose homomorphic images are in L

Inverse Homomorphism

Ezample 14. Let ¥ = {a,b}, and A = {0,1}. Let L = (00U 1)* and h(a) = 01 and h(b) = 10.
e h™1(1001) = {ba}, h=1(010110) = {aab}
e h™Y(L) = (ba)*
e What is h(h=1(L))? (1001)* C L
Note: In general h(h~Y(L)) C L C h=*(h(L)), but neither containment is necessarily an equal-

1ty.
Closure under Inverse Homomorphism

Proposition 15. Regular languages are closed under inverse homomorphism, i.e., if L is reqular
and h is a homomorphism then h=1(L) is reqular.

Proof. We will use the representation of regular languages in terms of DFA to argue this.
Given a DFA M recognizing L, construct an DFA M’ that accepts h~!(L)

e Intuition: On input w M’ will run M on h(w) and accept if M does.

Closure under Inverse Homomorphism

e Intuition: On input w M’ will run M on h(w) and accept if M does.

Ezample 16. L = L ((00U 1)*). h(a) = 01, h(b) = 10.

Figure 1: Transitions of automaton M accepting language L is shown in gray. The transitions of
automaton accepting h=1(L) are shown in red.

Closure under Inverse Homomorphism
Formal Construction

o Let M =(Q,A,0d,q0, F) accept L C A* and let h : ¥* — A* be a homomorphism

e Define M' = (Q',%,0', ¢(, F'), where

- Q' =Q
~ gy = qo
— F'=F, and

— &'(q,a) = ¢ where d7(q, h(a)) = {¢'}; M’ on input a simulates M on h(a)

o M’ accepts h™(L) because Yw. 8y (qo, w) = dar(qo, h(w)) (which you show by induction on
w).

2 Applications of Closure Properties

Example I

Definition 17. For a language L C ¥*, define suffix(L) = {v € £* | Ju € ¥*. wv € L}.

Proposition 18. Regular languages are closed under the suffix(-) operator. That is, if L is regular
then suffix(L) is also regular.

Proof. We present two possible proofs of this result.

Direct Construction: Since L is regular, there is a DFA M = (Q, %, 0, qo, F') that recognizes L.
We will construct an NFA N such that L(N) = suffix(L(M)) = suffix(L). Let us first spell out
what N needs to do in order to recognize suffix(L) — on input v, it needs to check if there is some
u such that uv € L or uv is accepted by M. N will do this by simulating M on the input v, but
instead of starting from the initial state qq, it will first guess a state that M reaches on some string
u (such that uv € L), and then simulate M on the input v. Formally, N = (@', X, 0, ¢, F') where

e Q' =QU{q)}, where ¢ ¢ Q
o ['=F
e And ¢’ is given by

5(q,a) ifge@
§'(g,a) =< {q€eQ|Fu.q —nq} ifg=qg)anda=ce
0

To complete the proof we need to argue that v is accepted by N iff v € suffix(L(M)). Suppose v is
accepted by N. Since the only transitions out of the initial state g(, are e-transitions, the accepting
computation of N on v looks like
@ —Nqg—nNq
with ¢/ € F' = F, and ¢ being such that there is a u such that gy — 7 ¢. In other words, we have
Qo ——mq—mq

and so uv € L(M) = L. Thus, v € suffix(L). Conversely, suppose v € suffix(L). Then there is u
such that uv € L. Since M recognizes L, M accepts uv using a computation of the form

[v /
Go — M4 —Mq
where ¢ is some state in Q and ¢’ € F. Then from the definition of N, we have a computation
;€ v /
o —Ng—N{¢
and since F' = F, v € L(N). This completes the correctness proof of N.
Closure Properties: Another proof of the same result uses closure properties.
e For an alphabet 3, let ¥ = {a | a € ¥}.
e Define the homomorphisms unbar : (¥ U ¥)* — $* and rembar : (X U X)* — ©* as

unbar(a) = a fora € ¥ unbar(a) =a for a €
rembar(a) = ¢ for a € ¥ rembar(a) = a for a € ¥

o Let I, = unbar‘l(L); since L is regular and regular languages are closed under inverse
homomorphisms, L; is regular. L; contains strings belonging to L which have some (or none)
of the letters annotated with a bar.

o Let Ly = L1 N X*Y*; Ly is regular because regular languages are closed under intersection.
Lo is the set of strings from L where some of the first few letters have been annotated with
a bar.

e Observe that suffix(L) = rembar(Ls). Thus suffix(L) is regular.

Example 11

Let M = (Q,%,0,qo, F) be a DFA. Consider
L ={w | M accepts w and M visits every state at least once on input w}

Is L regular?

Note that M does not necessarily accept all strings in L; L C L(M).

By applying a series of regularity preserving operations to L(M) we will construct L, thus
showing that L is regular
Computations: Valid and Invalid

e Consider an alphabet A consisting of [pag| where p,q € @, a € ¥ and §(p, a) = ¢g. So symbols
of A represent transitions of M.

e Let h: A — ¥* be a homomorphism such that h([pag]) = a

e Ly = h"Y(L(M)); Ly contains strings of L(M) where each symbol is associated with a pair
of states that represent some transition

— Some strings of L represent valid computations of M. But there are also other strings
in Ly which do not correspond to valid computations of M

e We will first remove all the strings from L; that correspond to invalid computations, and
then remove those that do not visit every state at least once.

Only Valid Computations
Strings of A* that represent valid computations of M satisfy the following conditions

e The first state in the first symbol must be gq
Ly = L1 N (([qoa1q1] U [goazqa] U - - - U [qoarqr]) A™)
([goarq1], - - - [goaxqy] are all the transitions out of gy in M)

e The first state in one symbol must equal the second state in previous symbol
Ly = Lo\ (A*(lpaq)[rbs)) A7)
qF#r
Remove “invalid” sequences from Lo. Difference of two regular languages is regular (why?).

So Lj is regular.

e The second state of the last symbol must be in F. Holds trivially because L3 only contains
strings accepted by M

Example continued

So far, regular language L3 = set of strings in A* that represent valid computations of M.

o Let £/, C A be the set of symbols where ¢ appears neither as the first nor the second state.
Then Ej is the set of strings where ¢ never occurs.

e We remove from L3 those strings where some ¢ €) never occurs

Li=Ls\ (| Ep)
qe@

e Finally we discard the state components in Ly

L = h(Ls)

e Hence, L is regular.

2.1 In a nutshell ...

Proving Regularity using Closure Properties
How can one show that L is a regular language?

e Construct a DFA or NFA or regular expression recognizing L

e Or, show that L can be obtained from known regular languages L1, Lo, ... Ly through regu-
larity preserving operations

A list of Regularity-Preserving Operations

Regular languages are closed under the following operations.
e Regular Expression operations
e Boolean operations: union, intersection, complement
e Homomorphism
e Inverse Homomorphism

(And several other operations...)

	Closure Properties
	Boolean Operators
	Homomorphisms
	Inverse Homomorphism

	Applications of Closure Properties
	In a nutshell …

