Formal Language and Automata Theory (CS21004)

Soumyajit Dey CSE, IIT Kharagpur Formal Language and Automata Theory (CS21004)

> Soumyajit Dey CSE, IIT Kharagpur

Announcements

Languages

Grammar

Soumyajit Dey CSE, IIT Kharagpur Formal Language and Automata Theory (CS21004)

Table of Contents

Announcements

2 Languages

Formal Language and Automata Theory (CS21004)

> Soumyajit Dey CSE, IIT Kharagpur

Announcements

Languages

• The slide is just a short summary

- Follow the discussion and the boardwork
- Solve problems (apart from those we dish out in class)

Formal Language and Automata Theory (CS21004)

> Soumyajit Dey CSE, IIT Kharagpur

Announcements

Languages

Table of Contents

1 Announcements

Formal Language and Automata Theory (CS21004)

> Soumyajit Dey CSE, IIT Kharagpur

Announcements

Languages

Formal Languages : alphabet

 $\label{eq:strings} \begin{array}{l} \Sigma \to \mbox{Alphabet, a finite non-empty set of symbols} \\ \mbox{`Strings' :: any possible $concatenation$ of symbols $\in \Sigma$ \\ \mbox{Some concepts related to strings ::} \end{array}$

- concatenation (◦) of strings : x y (ignore the operator in general) → a generalization of concatenation of symbols in Σ
- length '| |' of a string (inductive definition) : let x be a string (defined over Σ) and a ∈ Σ. Then ∀a ∈ Σ, |a| = 1, |x ∘ a| = |xa| = |x| + 1.

Formal Language and Automata Theory (CS21004)

Soumyajit Dey CSE, IIT Kharagpur

Announcements

Languages

Formal Languages : string

 Σ^* : set of all strings obtained by concatenating zero or more symbols from $\Sigma.$

- empty string : choose no symbol from $\Sigma,$ denoted by λ or ϵ or \bot
- $|\lambda| = 0$
- $\Sigma^+ = \Sigma^* \setminus \{\lambda\}$
- Although Σ is a finite set, both Σ⁺ and Σ^{*} are infinite sets.

Formal Language and Automata Theory (CS21004)

Soumyajit Dey CSE, IIT Kharagpur

Announcements

Languages

Formal Languages : string

- String concatenation is associative
- A Monoid is an algebraic structure formed by a set with an associative binary operation and an identity for the operation.
- $\langle \Sigma^*, \circ, \lambda \rangle$ is a Monoid

Formal Language and Automata Theory (CS21004)

Soumyajit Dey CSE, IIT Kharagpur

Announcements

Languages

Σ*

- Example : $\Sigma = \{a, b\}$
- $\Sigma^* = \{\lambda, a, b, aa, ab, ba, bb, aaa, aab, \cdots \}$
- The enumeration (ordering) is as per 'dictionary order' with a difference.
- strings smaller in length are placed earlier
- two strings equal in length are in dictionary order
- $\bullet \Rightarrow \mathsf{Lexicographic} \text{ ordering of strings}$

Formal Language and Automata Theory (CS21004)

Soumyajit Dey CSE, IIT Kharagpur

Announcements

Languages

Σ^* , lexicographic ordering

- The relation thus defined is a partial order over Σ^{\ast}
- In fact, it is a 'total order'
- The enumeration of Σ* following standard dictionary ordering would be 'unfair'
- you cannot physically exhaust strings starting with 'a' and go strings that start with 'b'
- \Rightarrow more on this later on

Formal Language and Automata Theory (CS21004)

Soumyajit Dey CSE, IIT Kharagpur

Announcements

Languages

String ops

Let $\Sigma = \{a, b\}$

- String reversal : $(abaab)^R = baaba$; Note $(\sigma^R)^R = \sigma$
- String x is a prefix of the string σ if ∃y such that x ∘ y = σ

- String x is a suffix of the string σ if ∃y such that y ∘ x = σ
- Suffixes of 'aab' = {aab, ab, b}

Formal Language and Automata Theory (CS21004)

Soumyajit Dey CSE, IIT Kharagpur

Announcements

Languages

Formal Language

Given Σ

- \bullet any formal language $\subseteq \Sigma^*$
- can be finite as well as infinite
- Ex (inf language) : $\{a^n b^n \mid n \ge 0\}$

Formal Language and Automata Theory (CS21004)

> Soumyajit Dey CSE, IIT Kharagpur

Announcements

Languages

Formal Language

Languages are sets, can apply all legal set operations

- $L_1 \cup L_2$, $L_1 \cap L_2$
- $\overline{L} = \Sigma^* \setminus L$

Can 'lift' operators on strings to languages

•
$$L^R = \{w^R \mid w \in L\}$$

•
$$L_1 \circ L_2 = \{x \circ y \mid x \in L_1 \land y \in L_2\}$$

Formal Language and Automata Theory (CS21004)

> Soumyajit Dey CSE, IIT Kharagpur

Announcements

Languages

Formal Language : Closure

- $L^0 = \{\lambda\}$
- $L^1 = L$
- $L^2 = \{xy \mid x, y \in L\}$
- •
- Star closure of a language : $L^* = L^0 \cup L^1 \cup L^2 \cup \cdots$
- Positive closure of a language : $L^+ = L^1 \cup L^2 \cup \cdots$
- Ex: $L = \{a^n b^n \mid n \ge 0\}, L^2 = \{a^n b^n a^m b^m \mid n, m \ge 0\}, L^R = \{b^n a^n \mid n \ge 0\}$

Formal Language and Automata Theory (CS21004)

Soumyajit Dey CSE, IIT Kharagpur

Announcements

Languages

Table of Contents

1 Announcements

2 Languages

Formal Language and Automata Theory (CS21004)

> Soumyajit Dey CSE, IIT Kharagpur

Announcements

Languages

Grammar

Natural language (english say) has a set of rules : decides whether a sentence is well formed.

- $\langle sentence \rangle \rightarrow \langle noun_phrase \rangle \langle predicate \rangle$
- $\langle \textit{noun_phrase} \rangle \rightarrow \langle \textit{article} \rangle \langle \textit{noun} \rangle$
- $\langle \textit{predicate} \rangle \rightarrow \langle \textit{verb} \rangle$

Formal Language and Automata Theory (CS21004)

> Soumyajit Dey CSE, IIT Kharagpur

Announcements

Languages

Grammar

A grammar G is a quadruple $G = \langle V, T, S, P \rangle$

- V : finite set of variables/nonterminals
- T : set of terminals
- $S \in V$: start symbol
- P : set of 'production rules'

Formal Language and Automata Theory (CS21004)

> Soumyajit Dey CSE, IIT Kharagpur

Announcements

Languages

'production rules'

- *P* is a set of production rules. Let $x \in (V \cup T)^+$, $y \in (V \cup T)^*$.
 - A production rule is of the form $x \mapsto y$. Rules $\in P$
 - Production rules apply on strings $\in (V \cup T)^+$
 - String w = uxv derives string z = uyv, written as

$$w \Rightarrow z$$

• w_1 derives $w_n : w_1 \Rightarrow w_2 \Rightarrow \cdots \Rightarrow w_n$ is written as $w_1 \stackrel{*}{\Rightarrow} w_n$

Formal Language and Automata Theory (CS21004)

Soumyajit Dey CSE, IIT Kharagpur

Announcements

Languages

Grammar n Languages

- For grammar G = ⟨V, T, S, P⟩, the set
 L(G) = {w ∈ T* | S ⇒ w} is the language generated by G.
- For any string $w \in L(G)$, there exists a derivation $S \Rightarrow w_1 \Rightarrow \cdots \Rightarrow w_n \Rightarrow w$
- S, w₁, · · · , w_n ∈ (V ∪ T)⁺ are sentential forms of the derivation (do not contain w)

Formal Language and Automata Theory (CS21004)

Soumyajit Dey CSE, IIT Kharagpur

Announcements

Languages

Grammar n Languages

Let $G = \langle V = \{S\}, T = \{a, b\}, S, P = \{S \rightarrow aSb \mid \lambda\}\rangle$. Note that,

- $L(G) = \{a^n b^n \mid n \ge 0\}$
- all sentential forms look like $w_i = a^i S b^i$
- all sentential forms are of odd length
- In order to generate $a^i b^i$, apply rule $S \to aSb~i$ times followed by $S \to \lambda$

Formal Language and Automata Theory (CS21004)

Soumyajit Dey CSE, IIT Kharagpur

Announcements

Languages

Grammar n Languages

• For
$$L = \{a^n b^{n+1} \mid n \ge 0\}$$
, production rules can be $P = \{S \rightarrow Ab, A \rightarrow aAb \mid \lambda\}$

Prove that with

$$P = \{S \rightarrow SS | \lambda | aSb | bSa \}$$

 $L(G) = \{ w \mid n_a(w) = n_b(w) \}.$

Formal Language and Automata Theory (CS21004)

Soumyajit Dey CSE, IIT Kharagpur

Announcements

Languages

 $L = \{w \mid n_a(w) = n_b(w)\}$

Base case is obvious. Let $P = \{S \rightarrow SS | \lambda | aSb | bSa \}$ generate strings in L upto length 2n. Consider $\sigma \in \Sigma^*$ with $n_a(\sigma) = n_b(\sigma)$ and $|\sigma| = 2n + 2$. Possibilities : $\mathbf{0} \ \sigma = \mathbf{a}\sigma'\mathbf{b}$ **a** $\sigma = b\sigma' a$ $\mathbf{0} \ \sigma = a\sigma'a$ $\mathbf{0} \ \sigma = \mathbf{b} \sigma' \mathbf{b}$ In 1, 2, $n_a(\sigma') = n_b(\sigma')$ and $|\sigma'| = 2n$. Hence, $S \Rightarrow aSb \stackrel{*}{\Rightarrow} a\sigma'b = \sigma \ (S \stackrel{*}{\Rightarrow} \sigma' \text{ as per induction hypothesis})$ $S \Rightarrow bSa \stackrel{*}{\Rightarrow} b\sigma'a = \sigma \ (S \stackrel{*}{\Rightarrow} \sigma' \text{ as per induction hypothesis})$ Case 3. 4 ??

Soumyajit Dey CSE, IIT Kharagpur Formal Language and Automata Theory (CS21004)

Formal Language

and Automata Theory (CS21004) Soumyajit Dey CSE, IIT Kharagpur

Announcements

Languages Grammar

$$L = \{w \mid n_a(w) = n_b(w)\}$$

Scan the string left to right, count +1 if faced with a, -1 if faced with b. If case 3, after first a, count = +1, before last a, count = -1. Count must cross 0 in between.

•
$$\sigma = a\sigma'a \Rightarrow \exists \sigma', \sigma'' \in L$$
 such that $\sigma = \sigma'\sigma''$.

• In that case,
$$S \Rightarrow SS \stackrel{*}{\Rightarrow} \sigma' \sigma''$$
.

• same argument for case 4.

Formal Language and Automata Theory (CS21004)

> Soumyajit Dey CSE, IIT Kharagpur

Announcements

Languages