
Pointers and its concepts

From variables to their addresses

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 1

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 2

Basics of Pointers

3

Introduction

A pointer is a variable that represents the location (rather than the value) of a data item.

They have a number of useful applications.

• Enables us to access a variable that is defined outside the function.

• Can be used to pass information back and forth between a function and its reference

point.

4

Basic Concept

In memory, every stored data item occupies one or more contiguous memory cells.

• The number of memory cells required to store a data item depends on its type (char, int,

double, etc.).

Whenever we declare a variable, the system allocates memory location(s) to hold the value

of the variable.

• Since every byte in memory has a unique address, this location will also have its own

(unique) address.

5

Example
Consider the statement

int xyz = 50;

• This statement instructs the compiler to allocate a location for the integer
variable xyz, and put the value 50 in that location.

• Suppose that the address location chosen is 1380.

• During execution of the program, the system always associates the name

xyz with the address 1380.

• The value 50 can be accessed by using either the name xyz or the address

1380.

50
1380

(xyz)

6

Example (Contd.)

int xyz = 50;

int *ptr; // Here ptr is a pointer to an integer

ptr = &xyz;

Since memory addresses are simply numbers, they can be assigned to some variables which

can be stored in memory.

• Such variables that hold memory addresses are called pointers.

• Since a pointer is a variable, its value is also stored in some memory location.

50
1380

(xyz)

1380
- - - -

(ptr)

7

Pointer Declaration

A pointer is just a C variable whose value is the address of another variable!

After declaring a pointer:

int *ptr;

ptr doesn’t actually point to anything yet.

We can either:

• make it point to some existing variable (which is in the stack), or

• dynamically allocate memory (in the heap) and make it point to it

Making it point

8

int a=10, b=5;

int *x, *y;

x= &a; y=&b;

10a: 1026

5b: 1036

x: 2044

y: 2056

1026

1036

*x= 20;

20

5

x

y

1026

1036
*y= *x + 3;

23

y= x;

20

5

x

y

1026

1026

23

9

Accessing the Address of a Variable

The address of a variable can be determined using the ‘&’ operator.

• The operator ‘&’ immediately preceding a variable returns the address of the variable.

Example:

p = &xyz;

• The address of xyz (1380) is assigned to p.

The ‘&’ operator can be used only with a simple variable or an array element.

&distance

&x[0]

&x[i-2]

10

Illegal usages

Following usages are illegal:

&235

• Pointing at constant.

int arr[20];

:

&arr;

• Pointing at array name.

&(a+b)

• Pointing at expression.

11

Pointer Declarations and Types

Pointer variables must be declared before we use them.

General form:

data_type *pointer_name;

Three things are specified in the above declaration:

• The asterisk (*) tells that the variable pointer_name is a pointer variable.

• pointer_name needs a memory location.

• pointer_name points to a variable of type data_type.

12

Pointers have types

Example:

int *count;

float *speed;

Once a pointer variable has been declared, it can be made to point to a variable using an

assignment statement like:

int *p, xyz;

:

p = &xyz;

• This is called pointer initialization.

13

Things to remember

Pointer variables must always point to a data item of the same type.

float x;

int *p;

p = &x; // This is an erroneous assignment

Assigning an absolute address to a pointer variable is prohibited.

int *count;

count = 1268;

14

Pointer Expressions

Like other variables, pointer variables can be used in expressions.

If p1 and p2 are two pointers, the following statements are valid:

sum = (*p1) + (*p2);

prod = (*p1) * (*p2);

*p1 = *p1 + 2;

x = *p1 / *p2 + 5;

15

More on pointer expressions

What are allowed in C?

• Add an integer to a pointer.

• Subtract an integer from a pointer.

• Subtract one pointer from another

• If p1 and p2 are both pointers to the same array, then p2–p1 gives the number of

elements between p1 and p2.

16

More on pointer expressions

What are not allowed?

• Add two pointers.

p1 = p1 + p2;

• Multiply / divide a pointer in an expression.

p1 = p2 / 5;

p1 = p1 – p2 * 10;

17

Scale Factor

We have seen that an integer value can be added to or subtracted from a pointer variable.

int x[5] = { 10, 20, 30, 40, 50 };

int *p;

p = &x[1];

printf(“%d”, *p); // This will print 20

p++; // This increases p by the number of bytes for an integer

printf(“%d”, *p); // This will print 30

p = p + 2; // This increases p by twice the sizeof(int)

printf(“%d”, *p); // This will print 50

18

More on Scale Factor

struct complex {

float real;

float imag;

};

struct complex x[10];

struct complex *p;

p = &x[0]; // The pointer p now points to the first element of the array

p = p + 1; // Now p points to the second structure in the array

The increment of p is not by one byte, but by the size of the data type to which p points.

This is why we have many data types for pointers, not just a single “address” data type

19

Pointer types and scale factor

Data Type Scale Factor

char 1

int 4

float 4

double 8

• If p1 is an integer pointer, then

p1++

will increment the value of p1 by 4.

20

Scale factor may be machine dependent

• The exact scale factor may vary from one machine to another.

• Can be found out using the sizeof function.

#include <stdio.h>

main()

{

printf (“No. of bytes occupied by int is %d \n”, sizeof(int));

printf (“No. of bytes occupied by float is %d \n”, sizeof(float));

printf (“No. of bytes occupied by double is %d \n”, sizeof(double));

printf (“No. of bytes occupied by char is %d \n”, sizeof(char));

}
Output:

Number of bytes occupied by int is 4

Number of bytes occupied by float is 4

Number of bytes occupied by double is 8

Number of bytes occupied by char is 1

21

Passing Pointers to a Function

Pointers are often passed to a function as arguments.

• Allows data items within the calling program to be accessed by the function, altered,

and then returned to the calling program in altered form.

• Called call-by-reference (or by address or by location).

Normally, arguments are passed to a function by value.

• The data items are copied to the function.

• Changes are not reflected in the calling program.

22

Passing arguments by value or reference

#include <stdio.h>

main()

{

int a, b;

a = 5; b = 20;

swap (a, b);

printf (“\n a=%d, b=%d”, a, b);

}

void swap (int x, int y)

{

int t;

t = x; x = y; y = t;

} Output

a=5, b=20

#include <stdio.h>

main()

{

int a, b;

a = 5; b = 20;

swap (&a, &b);

printf (“\n a=%d, b=%d”, a, b);

}

void swap (int *x, int *y)

{

int t;

t = *x; *x = *y; *y = t;

}
Output

a=20, b=5

23

Pointers and Arrays

When an array is declared:

• The compiler allocates a base address and sufficient amount of storage to contain all the

elements of the array in contiguous memory locations.

• The base address is the location of the first element (index 0) of the array.

• The compiler also defines the array name as a constant pointer to the first element.

24

Example

Consider the declaration:

int x[5] = {1, 2, 3, 4, 5};

• Suppose that the base address of x is 2500, and each integer requires 4 bytes.

Element Value Address

x[0] 1 2500

x[1] 2 2504

x[2] 3 2508

x[3] 4 2512

x[4] 5 2516

25

Example (contd)

Both x and &x[0] have the value 2500.

p = x; and p = &x[0]; are equivalent

• We can access successive values of x by using p++ or p-- to move from one element to

another.

Relationship between p and x:

p = &x[0] = 2500

p+1 = &x[1] = 2504

p+2 = &x[2] = 2508

p+3 = &x[3] = 2512

p+4 = &x[4] = 2516

*(p+i) gives the value of x[i]

