Pointers and its concepts

From variables to their addresses

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR -~

Basics of Pointers

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Introduction

A pointer is a variable that represents the location (rather than the value) of a data item.

They have a number of useful applications.

* Enables us to access a variable that is defined outside the function.

 Can be used to pass information back and forth between a function and its reference
point.

Basic Concept

In memory, every stored data item occupies one or more contiguous memory cells.

* The number of memory cells required to store a data item depends on its type (char, int,
double, etc.).

Whenever we declare a variable, the system allocates memory location(s) to hold the value
of the variable.

* Since every byte in memory has a unique address, this location will also have its own
(unique) address.

Example

Consider the statement 1380

int xyz = 50; (xyz)

* This statement instructs the compiler to allocate a location for the integer
variable xyz, and put the value 50 in that location.

 Suppose that the address location chosen is 1380.

* During execution of the program, the system always associates the name
xyz with the address 1380.

 The value 50 can be accessed by using either the name xyz or the address
1380.

Example (Contd.)

int xyz = 50;
int *ptr; // Here ptr is a pointer to an integer

ptr = &xyz;

Since memory addresses are simply numbers, they can be assigned to some variables which
can be stored in memory.

 Such variables that hold memory addresses are called pointers.
* Since a pointer is a variable, its value is also stored in some memory location.

Pointer Declaration

A pointer is just a C variable whose value is the address of another variable!

After declaring a pointer:
int *ptr;
ptr doesn’t actually point to anything yet.

We can either:

* make it point to some existing variable (which is in the stack), or

 dynamically allocate memory (in the heap) and make it point to it

Making it point

int a=10, b=5;
int *x, *y;

x= &a; y=&b;
*x= 20;

y= x4 3;

y=X,

Accessing the Address of a Variable

The address of a variable can be determined using the ‘&’ operator.
 The operator ‘& immediately preceding a variable returns the address of the variable.

Example:

p = &xyz;
 The address of xyz (1380) is assigned to p.

The ‘&’ operator can be used only with a simple variable or an array element.

&distance
&x[0]
&x[i-2]

lllegal usages

Following usages are illegal:

&235
 Pointing at constant.

int arr[20];

&arr;

* Pointing at array name.

&(a+h)

* Pointing at expression.

10

Pointer Declarations and Types

Pointer variables must be declared before we use them.

General form:

data_type *pointer_name;

Three things are specified in the above declaration:

« The asterisk (*) tells that the variable pointer_name is a pointer variable.
* pointer_name needs a memory location.
e pointer_name points to a variable of type data_type.

11

Pointers have types

Example:

int *count;

float *speed;

Once a pointer variable has been declared, it can be made to point to a variable using an
assignment statement like:

int *p, xyz;

P = &Xyz;
* This is called pointer initialization.

12

Things to remember
Pointer variables must always point to a data item of the same type.
float x;

int *p;
p = &X; /l This is an erroneous assignment

Assigning an absolute address to a pointer variable is prohibited.

int *count;
count = 1268;

13

Pointer Expressions

Like other variables, pointer variables can be used in expressions.

If p1 and p2 are two pointers, the following statements are valid:

sum = (*p1) + (*p2);
prod = (p1) * (*p2);
p1="*p1 + 2;
x=*p1/*p2 +5;

14

More on pointer expressions

What are allowed in C?

« Add an integer to a pointer.
* Subtract an integer from a pointer.
 Subtract one pointer from another

* If p1 and p2 are both pointers to the same array, then p2-p1 gives the number of
elements between p1 and p2.

15

More on pointer expressions

What are not allowed?

 Add two pointers.
p1=p1+p2;

* Multiply / divide a pointer in an expression.
p1=p2/5;
p1=p1-p2*10;

16

Scale Factor

We have seen that an integer value can be added to or subtracted from a pointer variable.

int x[5] ={10, 20, 30, 40, 50 };

int *p;

p=&x[1];

printf(“%d”, *p); Il This will print 20

ptHt; Il This increases p by the number of bytes for an integer
printf(“%d”, *p); Il This will print 30

p=p+2 Il This increases p by twice the sizeof{(int)

printf(“%d”, *p); Il This will print 50

17

More on Scale Factor

struct complex {
float real;
float imag;

)

struct complex x[10];

struct complex *p;

p = &x[0]; Il The pointer p now points to the first element of the array

p=p+1, Il Now p points to the second structure in the array

The increment of p is not by one byte, but by the size of the data type to which p points.
This is why we have many data types for pointers, not just a single “address” data type

18

Pointer types and scale factor

Data Type Scale Factor

char 1
int 4
float 4
double 8

* If p1 is an integer pointer, then
p1++
will increment the value of p1 by 4.

19

Scale factor may be machine dependent

 The exact scale factor may vary from one machine to another.
 Can be found out using the sizeof function.

#include <stdio.h>

main()

{
printf (“No. of bytes occupied by int is %d \n”, sizeof(int));
printf (“No. of bytes occupied by float is %d \n”, sizeof(float));
printf (“No. of bytes occupied by double is %d \n”, sizeof(double));
printf (“No. of bytes occupied by char is %d \n”, sizeof(char));

}

Output:
Number of bytes occupied by intis 4

Number of bytes occupied by float is 4
Number of bytes occupied by double is 8

Number of bytes occupied by charis 1
20

Passing Pointers to a Function

Pointers are often passed to a function as arguments.

* Allows data items within the calling program to be accessed by the function, altered,
and then returned to the calling program in altered form.

* Called call-by-reference (or by address or by location).

Normally, arguments are passed to a function by value.

* The data items are copied to the function.

 Changes are not reflected in the calling program.

21

Passing arguments by value or reference

#include <stdio.h>
main()
{
int a, b;
a=95; b=20;
swap (a, b);
printf (“\n a=%d, b=%d”, a, b);

}

void swap (int x, inty)
{
int t;
t=x x=y; y=¢t
) Output

a=5, b=20

#include <stdio.h>
main()
{
int a, b;
a=9%5; b=20;
swap (&a, &b);
printf (“\n a=%d, b=%d", a, b);

}

void swap (int *x, int *y)

{
int t;
} T xR R Output
a=20, b=5

22

Pointers and Arrays

When an array is declared:
 The compiler allocates a base address and sufficient amount of storage to contain all the
elements of the array in contiguous memory locations.
* The base address is the location of the first element (index 0) of the array.

 The compiler also defines the array name as a constant pointer to the first element.

23

Example

Consider the declaration:
int x[5]={1, 2, 3, 4, 5};

» Suppose that the base address of x is 2500, and each integer requires 4 bytes.

Element Value Address

x[0] 1 2500
x[1] 2 2504
X[2] 3 2508
X[3] 4 2512
x[4] 5 2516

24

Example (contd)

Both x and &x[0] have the value 2500.
p=x; and p=&x[0]; are equivalent

« We can access successive values of x by using p++ or p-- to move from one element to
another.

Relationship between p and x:

p = &x[0] = 2500
p+1 = &x[1] = 2504
p+2 = &x[2] = 2508 o |
p+3 = &x[3] = 2512 *(p+1) gives the value of x[i]
p+d = &x[4] = 2516

25

