
Indian Institute of Technology Kharagpur
Department of Computer Science and Engineering

CS60005: Foundations of Computing Science Autumn 2023

Class Test 2 6th of November 2023, 5:45 PM – 6:45 PM Marks = 20

Answer all questions. State all assumptions you make. Keep your answers concise.

1. (a) Construct a context-free grammar generating A∗ where A is defined as

A = {x#xR# | x ∈ {a, b}+}.

[xR denotes the reverse of string x.]

Solution: Let G = (N = {S, T},Σ = {a, b,#}, P, S) where P consists of the following production
rules.

S → SS | ε | T#

T → a#a | b#b | aTa | bTb

It is straightforward to verify that L(G) = A∗.

(b) Convert the grammar to Chomsky normal form.

Solution: The only ε-production is S → ε and getting rid of this production results in the same
grammar sans the production S → ε. The resulting grammar consists the following productions.

S → SS | T#

T → a#a | b#b | aTa | bTb

Now we introduce three productions H → #, A → a and B → b and replace occurrences of
terminals #, a, b with H,A,B respectively. Resulting set of production rules is given by

S → SS | TH
T → AHA |BHB |ATA |BTB
H → #

A→ a

B → b

Next step is to modify T -productions so that RHS of every production consists of exactly two
non-terminals. To this end, we introduce 4 new non-terminals XA, XB , UA, UB . New set of rules
is as follows.

S → SS | TH
T → AXA |BXB |AUA |BUB

XA → HA

XB → HB

UA → TA

UB → TB

H → #

A→ a

B → b

The above productions define a grammar in Chomsky normal form for the language A∗ \ {ε}.

6+2 = 8

2. Consider the language B = {an2 | n ≥ 1}. Is B context-free? If it is, describe a context-
free grammar or a pushdown automaton for B. Otherwise, prove that it is not and describe
(informally) a Turing machine that decides the language.

Hint: 1 + 3 + 5 + · · ·+ (2n− 1) = n2, for n ≥ 1. 6

Solution: B is not context-free. We prove this using pumping lemma for CFLs. Suppose that B is a

CFL. Let k be the constant guaranteed by pumping lemma. Take z = ak
2

. Then it is possible to write
z = uvwxy such that vx 6= ε, |vwx| ≤ k and uviwxiz ∈ B for all i ≥ 0.

Let |vx| = `. We know 0 < ` ≤ k. Consider the string z′ = uv2wx2z. We have |z′| = |z| + |vx| =
k2 + |vx| = k2 + `. We have 0 < ` ≤ k < 2k+ 1 and so k2 < |z′| < k2 + 2k+ 1 = (k+ 1)2. That is, the
length of z′ cannot be a perfect square and hence z′ /∈ B. This contradicts our assumption that B is a
CFL.

We now describe a (total) Turing machineM that decides B. M has two tapes. The first tape contains
the input string (a string of the form ak). M’s is to test whether k is a perfect square or not. Let X
be a symbol other than a,`, . The second tape initially contains 1 X followed by blanks. (Both tapes
have a left endmarker in the left-most cell.)

M repeats the following.

• M advances tape-head 1 (reading one a) to the right and moves tape-head 2 one cell to the right
reading an X.

• If both tape-heads have reached blank symbol, then accept and halt.

• If tape-head 1 reaches blank and tape-head 2 is pointing to an X, reject and halt.

• If tape-head 1 is reading a and tape-head 2 is reading blank, then write two more X’s on tape-2
at the end of the existing string of X’.

• Move tape-head 2 to the left-end so that it points to the first occurrence of X.

Essentially the machine maintains an odd number of X’s on tape 2 – 1 initially, 3 in the second iteration,
5 in the third iteration, and so on. Tape-head 1 never moves backwards; instead it moves one step
forward reading a for every occurrence of X on the second tape and this repeats for every odd-length
string of X’s genrated on tape-2. M checks if the number of a’s in tape 1 is a sum of consecutive odd
numbers (starting from 1). If so, the number of a’s must be a perfect square, and vice-versa.

3. Identify whether each of the following languages is recursive, r.e. but not recursive or not r.e. .
Justify your answer. In all of the following, M denotes a Turing machine.

(a) {M | L(M) has at least 100 strings}
Solution: r.e. but not recursive.

Let T≥100 = {M | L(M) has at least 100 strings}. The language T≥100 is r.e. since it is possible
to design a TM that, given description of a TM M, runs M on all strings from Σ∗ in a round
robin fashion; accepts whenever M accepts 100 strings.

Let P1 denote the property on r.e. sets defined as

P1(A) =

{
T if A contains atleast 100 strings
F otherwise

Deciding P1 is equivalent to dedciding membership in T≥100. We have P1(φ) = ⊥, P1(Σ∗) = >
and φ, Σ∗ are both r.e. sets. So P1 is a non-trivial property and by Rice’s theorem part I, P1 is
not decidable i.e., T≥100 is not recursive.

(b) {M |M has at least 100 states}
Solution: Recursive.

Check the description of the machine to see if the number of states is ≥ 100.

(c) {M | L(M) has at most 100 strings}
Solution: Not r.e.

Let T≤100 = {M|L(M) has at most 100 strings}. Let P2 denote the property on r.e. sets defined

Page 2

as

P2(A) =

{
T if A contains at most 100 strings
F otherwise

Deciding P2 is equivalent to dedciding membership in T≤100. We have P2(φ) = >, P2(Σ∗) = ⊥
and φ ⊂ Σ∗. So P2 is a non-monotone property and by Rice’s theorem part II, undecidable.
Therefore, T≤100 is not r.e.

2+2+2 = 6

Page 3

