

Answer all questions. State all assumptions you make. Keep your answers concise.

1. (a) For each of the following arguments, if the argument is valid, then prove it; otherwise, give a counter-example to show that the argument is invalid.

i.

Solution: The argument is invalid. Consider the assignment $p = \top$, $q = \bot$, $s = \bot$, $t = \bot$, $r = \bot$ (here \bot denotes false). Then $\neg(\neg p \lor q) = p \land \neg q = \top$, $(p \land \neg q) \rightarrow \neg s$ holds and as a consequence $\neg t \rightarrow \neg s$ is true. But this implies the last statement is true irrespective of the value r ttakes. The assignment satisfies the four given premises but not the conclusion.

ii.

Solution: The argument is invalid. Consider the assignment $r = \bot, t = \bot, p = \top, q = \bot$. This assignment satisfies the three given premises but not the conclusion.

- (b) Assume that the following predicates/formulas are defined (over the set of natural numbers $\mathbb{N} = \{0, 1, 2, \dots\}$:
	- Div (x, y) : true if x divides y and false otherwise
	- $x < y$: true iff x is strictly less than y
	- Prime (p) : true iff p is a prime number

Write down formulas in predicate logic for the following.

i. Pow_p (x) : true iff x is a power of the prime p. Solution:

$$
\forall y ((\text{Div}(y, x) \land \text{Prime}(y)) \rightarrow (y = p))
$$

ii. Digit (v, y, b) : true iff p-ary digit of v at position y is b. Here, position is specified by y which is a power of p . For example, the binary digit of 1000110010111 at position 2^2 , 2^4 and 2^5 are respectively 1 (third bit from right), 1 (fifth bit from right) and 0 (sixth bit from right). Solution:

$$
\exists a \exists r ((v = apy + by + r) \land (r < y) \land (b < p))
$$

 $(1+1)+(1+2)= 5$

2. Let S be any countable subset of R. Show that $\mathbb{R} \sim \mathbb{R} \setminus S$. 5

Solution: Since S is countable, the elements of S can be numbered s_0, s_1, s_2, \ldots Let r_0, r_1, r_2, \ldots be distinct elements of R. Such elements exist for otherwise R would be countable. Now define a map $f: \mathbb{R} \to \mathbb{R} \setminus S$ as follows: for all $i \in \mathbb{N}$, $f(s_i) = r_{2i}$ and $f(r_i) = r_{2i+1}$; for all $x \in \mathbb{R} \setminus \{r_0, r_1, r_2, \ldots\}$, $f(x) = x$. Clearly f is a bijection. For all $i \in \mathbb{N}$, $f^{-1}(r_i) = r_{(i-1)/2}$ if i is odd and $f^{-1}(r_i) = s_{i/2}$ if i is even; for all $x \in \mathbb{R} \setminus \{r_0, r_1, r_2, \ldots\}, f^{-1}(x) = x$. Therefore $\mathbb{R} \sim \mathbb{R} \setminus S$.

3. Let (G, \circ) be a group. Define a relation R on G as follows: For all $(x, y) \in G \times G$, $(x, y) \in R$ if and only if $\exists a \in G$ such that $a \circ x = y \circ a$. Prove that R is an equivalence relation. $\begin{bmatrix}5\end{bmatrix}$

Solution: We show that R is reflexive, symmetric and transitive.

Let e be the identity of (G, \circ) . For every $x \in G$, $e \circ x = x \circ e$ and hence $(x, x) \in \mathcal{R}$. R is reflexive. Let $x, y \in G$ such that $(x, y)R$. There exists $a \in G$ such that $a \circ x = y \circ a$. Let a^{-1} be the inverse of a. We have

> $a \circ x = y \circ a$ $a \circ x \circ a^{-1} = y$ $^{-1} = y$ 'multiplying' both sides on the right by a^{-1} $x \circ a^{-1} = a^{-1}$ $\circ y$ 'multiplying' both sides on the left by a^{-1}

that is, $a^{-1} \circ y = x \circ a^{-1}$ and hence $(y, x) \in \mathcal{R}$. Hence \mathcal{R} is symmetric. Now, suppose that $(x, y), (y, z) \in \mathcal{R}$. There exist a, b such that

$$
a \circ x = y \circ a \tag{1}
$$

and

$$
b \circ y = z \circ b. \tag{2}
$$

'multiplying' both sides of Equation [1](#page-1-0) on the left by b, we have

 $b \circ a \circ x = b \circ y \circ a.$

Using Equation [2,](#page-1-1) substitute for $b \circ y$ with $z \circ b$. We get

 $b \circ a \circ x = z \circ b \circ a$,

and therefore $(x, z) \in \mathcal{R}$ implying that $\mathcal R$ is transitive.

- 4. Let $S = \mathbb{R} \setminus \{0\} \times \mathbb{R}$. Define the operation \circ as follows: $(u, v) \circ (x, y) = (ux, vx + y)$.
	- (a) Is (S, \circ) a group? If so, is it Abelian?

Solution: Let $(u, v), (x, y), (w, z) \in S$. Then u, x are non-zero reals and so is their product. Also, $vx + y \in \mathbb{R}$ and so S is closed under \circ . We have

$$
((u, v) \circ (x, y)) \circ (w, z) = (ux, vx + y) \circ (w, z)
$$

= (uxw, wvx + wy + z)
= (u(xy), v(xw) + (yw + z))
= (u, v) \circ (xw, yw + z)
= (u, v) \circ ((x, y) \circ (w, z))

and hence (S, \circ) is associative. For any $(x, y) \in S$, $(x, y) \circ (1, 0) = (x, y) = (1, 0) \circ (x, y)$ and so $(1,0)$ is the identity. For any $(x,y) \in S$, $(\frac{1}{x}, -\frac{y}{x}) \in S$ since $x \neq 0$. Also, $(x,y) \circ (\frac{1}{x}, -\frac{y}{x}) = (1,0)$ and $(\frac{1}{x}, -\frac{y}{x}) \circ (x, y) = (1, 0)$ and therefore $(\frac{1}{x}, -\frac{y}{x})$ is the inverse of (x, y) . We have shown that (S, \circ) is a group.

Consider $(1, 2), (2, -3) \in S$. We have $(1, 2) \circ (2, -3) = (2, 1)$ and $(2, -3) \circ (1, 2) = (2, -1)$ and $(2, 1) \neq (2, -1)$. (S, \circ) is not Abelian.

(b) Define $\hat{S} = \mathbb{Q} \setminus \{0\} \times \mathbb{Q}$. Is (\hat{S}, \circ) a group?

Solution: $\mathbb Q$ is closed under addition and multiplication. Multiplication is associative. Also, every non-zero element has a multiplicative inverse. From these it follows that, all group properties hold for (\hat{S}, \circ) as well. Identity and inverse are identical to the those for (S, \circ) .

 $\boxed{4+1 = 5}$