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Foundations of Computing Science (CS60005) Autumn Semester, 2023-2024

Mid-Semester Examination Date: 20-Sep-2023, 2:00 PM – 4:00 PM Marks: 60

Instructions:

• Write your answers in the answer booklet provided to you in the examination hall.

• Answer ALL five questions mentioning the question numbers clearly.

• Be brief and precise. Write the answers for all parts of a question together.

• State any results you use or assumptions you make.

• Keep all your answers/proofs mathematically precise and to the point.

• Sketchy proofs or claims without reasoning receive no credit.

1. (Based on “The Adventure of Silver Blaze” by Sir Arthur Conan Doyle).
A prize-winning racehorse named Silver Blaze has been stolen from a stable, and a bookmaker named Fitzroy
Simpson has been arrested as the prime suspect by Inspector Gregory. Your task is to (logically) find who stole
Silver Blaze on behalf of Sherlock Holmes. The premises are as follows.

F1: The horse was stolen either by Fitzroy or by its trainer John Straker.

F2: The thief had to have entered the stable the night of the theft.

F3: If a stranger enters the stable, the dog barks.

F4: Fitzroy was a stranger.

F5: The dog did not bark.

Your goal is to (logically) find the reason for the murder. Please frame the above arguments logically (using
propositional logic) and formally derive the solution. Present your answer as asked in the following parts.

(a) Write all propositions with English meaning (statements) that you have used.

Solution: We use 7 propositions:

tf : Fitzroy is the thief

ts: Straker is the thief

ef : Fitzroy entered the stable the night of the theft

es: Straker entered the stable the night of the theft

d: The dog barked

sf : Fitzroy is a stranger

ss: Straker is a stranger

(b) Build suitable propositional logic formula to encode each of the five statements above.

Solution:

F1: (tf ∨ ts) ∧ ¬(tf ∧ ts)
F2: (tf → ef) ∧ (ts→ es)

F3: (ef ∧ sf → d) ∧ (es ∧ ss→ d)

F4: sf

F5: ¬d

(c) Show all deduction steps (with the name of the rules you apply) to derive the goal.

Page 1



Solution:

(ef ∧ sf → d) ∧ (es ∧ ss→ d)
Conjunction Elimination

∴ (ef ∧ sf → d)

(ef ∧ sf → d)
sf

Modus Tollens
∴ ¬(ef ∧ sf)

¬(ef ∧ sf)
sf

Disjunctive Elimination
∴ ¬ef

tf → ef
¬ef

Modus Tollens
∴ ¬tf

tf ∨ ts
¬tf

Disjunction Elimination
∴ ts

(d) Conclude who stole Silver Blaze.

Solution: John Straker stole Silver Blaze.

2+2.5+6+1.5 = 12

2. Prove the following.

(a) R ∼ R× R.

Solution: We know R ∼ [0, 1) and so R × R ∼ [0, 1) × [0, 1). Let A = [0, 1) \ Q. Then A ∼ [0, 1) since Q is
countable. Now consider the map f : [0, 1) → [0, 1) × [0, 1) defined as f(x) = (x, x). It is easy to see that f is
injective and consequently [0, 1) × [0, 1) is at least as large as [0, 1). Now define g : A × A → A as follows: for
x = 0.x1x2 · · · , y = 0.y1y2 · · · ∈ A define g(x, y) = 0.x1y1x2y2 · · · . The function g is injective. So A is atleast as
large as A×A thus implying that [0, 1)× [0, 1) ∼ [0, 1).

(b) Let A, B be two sets with A ∩ B = ∅. Then 2A × 2B ∼ 2A∪B . Do not make any assumptions about the
cardinalities of A and B.

Solution: Define a function f : 2A × 2B → 2A∪B as follows: for any subsets S ⊆ A and T ⊆ B, define
f(S, T ) = S ∪ T . Suppose that f(S1, T1) = f(S2, T2). We have

f(S1, T1) = f(S2, T2)

S1 ∪ T1 = S2 ∪ T2

(S1 ∪ T1) ∩A = (S2 ∪ T2) ∩A
S1 ∩A = S2 ∩A

S1 = S2

The fourth line follows from the fact that T1 ∩ A = T2 ∩ A = ∅ since both T1, T2 are subsets of B. Similarly, we
can take intersection with B and show that T1 = T2. Therefore f is injective.

Let U ⊆ A ∪ B. Since A,B are disjoint, U ∩ A ⊆ A and U ∩ B ⊆ B. Let S = U ∩ A and T = U ∩ B. Then
f(S, T ) = S∪T = U∩(A∪B) = U . Therefore every element of 2A∪B has a preimage implying that f is a surjection.

It follows that f is a bijection and hence 2A × 2B ∼ 2A∪B .

6+6 = 12
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3. Let G = (V,E) be an undirected graph. For vertices u, v ∈ V , a path connecting u and v is a sequence of
vertices u0(= u), u1, u2, . . . , uk(= v) such that for every i = 0, 1, . . . , k − 1, the edge {ui, ui+1} ∈ E. Define a
relation R on V × V as follows: (u, v) ∈ R if either u = v or there is a path in G connecting u and v.

(a) Prove that R is an equivalence relation.

Solution: For all u ∈ V , (u, u) ∈ R by defining of R, implying R is reflexive. Let (u, v) ∈ R. Then u and v
are connected by a path in G. Since G is undirected, the same path connects v and u and hence (v, u) ∈ R. The
relation is symmetric. Now suppose that (u, v), (v, w) ∈ R. There are paths u, u1, . . . , uk, v and v, v1, . . . , v`, w in
G connecting u, v and v, w respectively. Then u, u1, u2, . . . , uk, v, v1, v2, . . . , v`, w is a path connecting u and w. So
(u,w) ∈ R thus implying that R is ttransitive. Clearly R is an equivalence relation.

(b) What are the equivalence classes of V/R?

Solution: Take any connected component of G. Any two vertices in the component are related. Hence the
equivalence classes are nothing but the connected components of G.

9+3 = 12

4. Prove or disprove the following:

(a) A group (G, ·) is Abelian if and only if (ab)2 = a2b2 for all a, b ∈ G.

Solution: This statement is correct. Suppose that G is Abelian. Then for any a, b ∈ G, we have (ab)2 = (ab)(ab) =
a(ba)b = a(ab)b = (aa)(bb) = a2b2.

Now suppose that for all a, b ∈ G, (ab)2 = a2b2. We have abab = aabb. Multiplying both sides with a−1 on the left
and b−1 on the right, we have: (a−1a)ba(bb−1) = (a−1a)ab(bb−1) i.e., ba = ab. Therefore G is Abelian.

(b) Let (R,+, ·) be a commutative ring with identity and let 0,1 denoting the identities with respect to +, ·
respectively. Then, there exists an element in R which is both a unit and a zero-divisor.

[An element a ∈ R \ {0} is called a unit if there exists u ∈ R such that au = ua = 1.]

Solution: This statement is incorrect. Suppose that a 6= 0 be both a zero-divisor and a unit in R. Then a has an
inverse w.r.t. ·, say, a−1. Also, since a is a zero-divisor, there exists b ∈ R \ {0} such that ab = 0. Multiplying both
sides with a−1 on the left, we have a−1ab = 0 i.e., b = 0 contradicting our choice of b. Therefore no non-zero a can
simultaneously be a zero-divisor and a unit.

6+6 = 12

5. Suppose that A ⊆ {0, 1}∗ is a regular language. Define DEL-1A = {xy | x1y ∈ A}. The set DEL-1A essentially
consists of all strings that can be obtained from strings in A by deleting exactly one 1. Prove that DEL-1A is
regular.
Hint: Use non-determinism. 12

Solution: Let M = (Q,Σ = {0, 1}, δ, s, F ) be a DFA accepting A. We construct a NFA N = (QN ,Σ, δN , sN , FN ) for
DEL-1A. Define QN = Q × {N,Y }, sN = (s,N), FN = {(p, Y ) | p ∈ F} and the transition function δN as follows: for
every p ∈ Q, b ∈ {0, 1} let

δN ((p,N), ε) = {(δ(p, 1), Y )}
δN ((p, Y ), ε) = ∅

δN ((p,N), b) = {(δ(p, b), N)}
δN ((p, Y ), b) = {(δ(p, b), Y )}

The machine N basically chooses the 1 to delete non-deterministically. State of the form (p,N) indicates that the 1 has
not yet been chosen. There is an ε-transition from every such state to state (q, Y ) so that M makes a move from state
p to state q upon reading 1. Here, the second component in (q, Y ) indicates 1 has been seen and skipped/deleted. This
ensures that the computation of M processing that particular occurrence of 1 is ignored. All other transitions remain
as they are in M. Also once a 1 has been deleted, the machine N behaves exactly as M i.e., there are no ε-transitions
from states of the form (p, 1). A string is accepted if after processing it, N reaches an accepting state after deleting a 1
i.e., it reaches a state of the form (p, Y ) where p ∈ F .
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