Tutorial 3 Finite Automata and Regular Languages

- 1. Design a DFA for the following language: $\{x \in \{a, b\}^* \mid \#a(x) = 0 \mod 2 \text{ and } \#b(x) = 0 \mod 3\}$.
- 2. Consider the set $A = \{x \in \{a, b\}^* \mid x \text{ ends with } 3 \text{ consecutive } b's\}.$
 - (a) Design an NFA for A.
 - (b) Using subset construction, construct an equivalent DFA for the NFA from the previous part.
 - (c) Reduce the number of states in the resulting DFA by removing unreachable states.
- 3. For a string $x, x^{\mathbf{R}}$ denotes the reverse of x. Define $A^{\mathbf{R}} = \{x^{\mathbf{R}} \mid x \in A\}$ for a set A. Prove or disprove: if A is regular then so is $A^{\mathbf{R}}$.
- 4. Give regular expressions for each of the following subsets of $\{a, b\}^*$.
 - (a) $\{x \mid x \text{ contains an odd number of } a$'s $\}$.
 - (b) $\{x \mid x \text{ contains an even number of } b$'s $\}$.
 - (c) $\{x \mid x \text{ contains an odd number of } a$'s and an even number of b's $\}$.
- 5. Which of the following are regular sets? Justify.
 - (a) $\{a^n \mid n \text{ is a prime number}\}$
 - (b) $\{x \in \{a, b\}^* \mid x \text{ does not have three consecutive occurences of } a\}$
 - (c) $\{x \in \{a, b\}^* \mid x = x^{\mathbf{R}}\}$
 - (d) $\{x \in \{a, b, c\}^* \mid \#b(x) = 4n + 1, n \ge 1\}$