Computational Number Theory (CS60094)

Spring Semester, 2023

Tutorial - 3

- 1. For a positive integer n, the sum of the reciprocals of all primes $\leq n$ asymptotically approaches $\ln \ln n$. Using this fact, derive that the sieve of Eratosthenes can be implemented to run in $\mathcal{O}(n \ln \ln n)$ time.
- 2. Modify the sieve of Eratosthenes so that it runs in $\mathcal{O}(n)$ time.
- 3. If both p and (2p + 1) are prime, we call p a Sophie-Germaine prime. Locate the smallest Sophie-Germaine prime $p \ge n$ for a given positive integer n >> 1, by sieving over interval [n, n + M].
 - Find a value of M such that there is at least one Sophie-Germaine prime in the interval [n, n + M] with high probability.
 - Describe the sieving mechanism to throw away the values of (n+i) for which either (n+i) or 2(n+i) + 1 has a prime divisor less than or equal to the t^{th} prime, where t is some constant.
- 4. Let s and t be bit length with s > t.
 - Describe an algorithm to locate a random s-bit prime p such that a random prime of bit length t divides (p-1).
 - Analyze its runtime.
- 5. Prove the following properties of any Carmichael number n.
 - (p-1)|(n-1), for every prime divisor p of n.
 - n is odd.
 - *n* is square-free.
- 6. Suppose that A_y is a yes-biased algorithm for proving the primality of an integer and A_n is a no-biased algorithm for the same purpose. Prove or disprove: by running A_y and A_n alone, we can deterministically conclude about the primality of an integer.
- 7. Let $n \in \mathbb{N}$ be odd and composite. If n is not a pseudoprime to some base in \mathbb{Z}_n^* , prove that n is not a pseudoprime to at least half of the bases in \mathbb{Z}_n^* .
- 8. Let $n \in \mathbb{N}$ be odd and composite. If n is not a Euler pseudoprime to some base in \mathbb{Z}_n^* , prove that n is not a Euler pseudoprime to at least half of the bases in \mathbb{Z}_n^* .
- 9. Write the binary search algorithm for finding k^{th} root of an integer.