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Abstract—In this paper, we propose a delay-aware Q-learning-based
routing algorithm - XiA - for sending data from users to nearest Access
Points (APs) through Unmanned Aerial Vehicle (UAV) swarms communi-
cating using 6G technology. These UAVs assist the ground networks in
overcoming communication voids while maneuvering through different
demographics. However, the communication links in the THz band have
limited transmission range, causing the UAVs to frequently disconnect
from the swarm. We overcome such issues by waiting until the UAV
comes in contact with others in case of non-time-sensitive data. In
the case of time-sensitive data, the UAVs send the data to the APs
through Low Earth Orbit (LEO) satellites. To empower XiA to adapt to
the changing environments and expensive delays in LEO, we model the
rewards by accounting for spreading and absorption in the 6G channels,
and Doppler effect and pointing error in the satellite channel. We show
our bias for the parameters through extensive simulations and prove
that the Q-model in XiA achieves convergence under all conditions.
Additionally, in comparison with state-of-the-art solutions, we observe
that XiA offers an improved delay of 82%.

Index Terms—Unmanned Aerial Vehicle swarms, Communication
channel, Data offloading, Routing, Reinforcement learning, Q-learning,
THz communication, Satellite communication, Mobility.

1 INTRODUCTION

UAVs acting as aerial Base Stations (BSs) play a significant
role in establishing network connection in disaster-hit areas
and also in overcoming communication voids. Precise place-
ment of Ground Vehicles (GV) on uneven terrains and haz-
ardous regions for establishing communications is challeng-
ing. In such scenarios, it is beneficial for these GVs to de-
ploy UAVs and receive data from them. The limited channel
capacities among the UAVs often get overloaded, mandating
the need for communications with higher capacities, imply-
ing the application of the THz band in 6G technologies.
Although the increased frequency range offers improved
data rates, the corresponding short wavelengths limit the
transmission range. Such limitations restrict the movement of
the UAVs to ensure connectivity with neighboring UAVs and
nearest Access Points (APs)/GV. Additionally, the reduced
communication ranges create disjoint sets of UAVs with
no network path to the GV. While Low Earth Orbit (LEO)
satellites (SAT) is a straightforward solution for overcoming
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Figure 1: Proposed UAV-LEO-GV architecture for XiA.

the aforementioned issues, it is expensive (time consuming).
Intelligent routines are necessary to determine the data of-
floading strategy for minimizing transmission delays in such
mobile real-time environments.

In this work, we propose a Q-learning (QL)-based delay-
aware solution - XiA - to route the data through the neigh-
boring UAVs (multi-hops) to the nearest AP. XiA stands for
Send-it-Anyway with X representing the ground, UAV, and
space connections from the UAV. We assume that the APs in
this work have interfaces for both 6G and satellite commu-
nications. We consider a set of UAVs U = {u1, u2, ..., um},
deployed from GVs in communication voids or disaster-hit
areas, form clusters based on their locations and transmis-
sion range as shown in Fig. 1. They communicate among one
another and the GV using THz communications and receive
data from a set of users/survivors V = {v1, v2, ..., vn}. Since
the user devices may be of any type (4G/5G/6G), we do
not restrict the user-UAV communication to one technology.
However, the height of the UAVs depends on the type
of communication link. These UAVs receive data from the
users and forward/route it to the nearest GV/AP among
the set A = {a1, a2, ..., ap} via other neighboring UAVs
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acting as relays. UAVs that are away from its neighbors and
lose connection with the APs may offload their data to the
satellites. Since the delay for UAV-satellite communication is
high, we offload to the satellite based on the time-sensitivity
of user data. Such network architectures have the potential
to enhance network connectivity, increase reliability and
coverage of UAV services, perform Simultaneous Localisa-
tion and Mapping (SLAM) operations, and others. It may be
noted that, as shown in Fig. 1, we consider UAVs and GVs
to have both 6G and satellite communication technologies.

Example Scenario: We illustrate the proposed routing solution
with the help of an example. Consider a disaster-hit region
with users stranded on dangerous terrains such as in Fig. 1.
Survivor tracking and management, along with GV place-
ment, is challenging in such scenarios. UAVs deployed in
these regions from the GV may identify survivors with on-
board cameras, infrared and thermal sensors, and others.
The proposed routing algorithm XiA, for the 6G-enabled
UAVs using the QL method, facilitates optimized forward-
ing of the tracked information to the nearest GV. In case
there is no connection to the GV, the UAVs offload the data
to the satellite based on the data urgency. Otherwise, the
UAV stores the information in its cache until the arrival of
other proximal UAVs. We consider one AP/GV to establish
a proof-of-concept for XiA. The same will work in case of
the presence of multiple APs on the ground.

1.1 Motivation

UAVs operate in the 3D space with 6 degrees of freedom,
implying that the environmental conditions have daunting
effects on the flight parameters, which directly hamper
the communication links due to the sensitivity of the THz
bands. Such effects increase the difficulty of steady and
planned flight, especially in disaster-hit areas and commu-
nication voids. In such conditions, reliable communication
is necessary. Moreover, independently flying UAVs often get
disconnected from the swarm, losing their communication
path to the APs. In such scenarios, communication with
LEO satellites is beneficial. However, high UAV-satellite
communication costs (due to limited UAV resources) and
increased delay mandate the need for intelligent routing
decisions in real-time. Additionally, the limited transmission
range in 6G technologies further increases the changes in the
communication links in the swarm. These issues motivate
us to design the proposed solution XiA, for intelligently
routing time-sensitive data to nearest APs by accounting
for the resource-constrained nature of the UAVs and the
limitations in 6G, coupled with the delays in the LEO
communications. Additionally, salient features of QL, such
as the feedback loop, easy adaptation to changes, and the
non-greedy selection technique motivate us to adopt it as
the solution approach for this work.

1.2 Contribution

In this work, we propose a QL-based solution XiA, for rout-
ing delay-sensitive data packets from the users to the nearest
APs using UAV BSs. The UAVs communicate using THz
frequency band and communicate with LEO satellites to
overcome limited transmission ranges and receive messages

from the disjoint ones. The following constitute our major
contributions in this work:

• UAV-LEO-GV Architecture: We present an architec-
ture for maintaining communication with UAVs and
the disjoint participants of the swarms that move out
of the transmission range by enabling communica-
tion with LEO satellites. We also highlight possible
network topologies for the proposed architecture.

• Delay-Sensitive Routing: We formulate reward func-
tions based on the urgency of the data from the users
and the communication links among the participants
of the UAV swarms. We account for the dynamically
changing environments and make informed deci-
sions from past mistakes using Q-learning approach.

• Evaluation: Through extensive real-world emula-
tions and by accounting for the atmospheric effects
on the communication signals and changing topolo-
gies, we provide a detailed analysis of XiA.

It may be noted that we refrain ourselves from modeling the
user-UAV interactions to maintain simplicity in this paper
and focus on the UAV-UAV and UAV-LEO communications.

2 RELATED WORK

The THz band’s frequencies do not behave in the same
way as the current GHz band due to small radio frequency
(RF) components [1]. As the signals in such high frequen-
cies demonstrate distinguishable spatio-temporal dispersion
due to scattering, Ju et al. [2] designed channel models for
THz communications. They studied the scattering power
from various materials with different roughness factors.
In addition to scattering, line-of-sight signals, reflection,
and diffraction components also affect the received signal
power. Han et al. [3] designed channel models for the THz
band by considering the mentioned factors using ray-tracing
techniques. Moreover, THz frequencies do not perform well
on hardware impairments. The authors in [4] designed a
channel estimator and signal detector to facilitate reliable
data exchange. Apart from the channel models and ap-
plications mentioned above, the authors in [5] highlighted
further opportunities and challenges in the THz band.

The frequencies in the THz band suffers from attenuation
due to scattering and dispersion in the near-earth atmo-
sphere [6]. Such attenuation effects mandate UAVs to fly
close to the ground and also in close proximity to communi-
cate with one another. The authors in [7] proposed methods
for determining optimal atmospheric heights for seamless
connectivity. They accounted for various environmental
conditions such as temperature, water vapour, changing
weathers, and others in their study. Gong et al. [8] proposed
a scheme based on gradient projection to maximize net-
work availability for free space optical satellites. Similarly,
Yuichi et al. [9] proposed a resource allocation scheme for
satellites serving requests from terrestrial, airborne, and
marine devices/users. Apart from channel maximization,
the authors in [10] addressed the issue of impairments in
satellite hardwares. They focused on multi-beam antennas
in the satellites along with propagation loss, and random
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Figure 2: Network topologies for the proposed routing scheme.

shadowing and investigated relay-based land-satellite com-
munications. Jian et al. [11] also proposed a big data solution
to identify behaviors of mobile BSs based on network data.
The authors in [12] presented different gateway-selection
methods for small and mini UAVs. Other applications of
ML and its scope in wireless networks is featured in [13].

Synthesis: Routing in UAV swarms is a mature field of
study among researchers. However, there exists a lacuna in
these routing mechanisms for adapting to highly dynamic
environments. Since communication links in conventional
4G and 5G technologies last for long ranges, the existing lit-
erature does not suffice for 6G communications. Intelligent
solutions are necessary for the highly dynamic links among
the UAVs and their network constraints due to the THz
band. Conventional ground vehicle-UAV communications
do not suffice for UAVs with real-time tasks that need to
cover a large area. The limited communication range forces
the UAVs to form disjoint components, which makes routing
more challenging. In such cases, smart satellite communica-
tion is essential to route important messages to the nearest
AP.

3 NETWORK ARCHITECTURE

We consider a set of UAVs U = {u1, u2, ..., um} and a set
of user devices V = {v1, v2, ..., vn} in the network. We also
consider a LEO satellite L to facilitate the communication
with isolated UAVs. The formation of the UAVs from the
GV, acting as flying BS, may be based on any of the three
modes in Fig. 2. Due to the communications with the LEO
satellites, the UAVs may not mandatorily be in connection
with the nearest AP and neighboring UAVs. This relaxation
in connectivity (dotted lines in Fig. 2(a)) allows extended
coverage to the UAVs. In Fig. 2(b), the UAVs follow a star
topology, where the master UAV is responsible for collecting
data from the other UAVs and interacting with the LEO
satellite. On the other hand, the UAVs in Fig. 2(a) follow
a mesh topology, and all of them have the provision for con-
necting to the satellite. In such cases, each UAV is capable
of making transmission decisions based on requirements.
Fig. 2(c) is a hybrid deployment method where few selected
UAVs may communicate with the satellite, and the other
UAVs orchestrate the communication for delivering data
to the APs through them. In this work, we consider the
topology in Fig. 2(a) and the UAVs to be in connection with

one another using THz communication technologies and
free-state optical communication for the satellite. Commu-
nication with the user devices may be either THz or GHz
communications. The decision on user device frequency
range is important for determining the flight height and
mobility of the UAVs.

4 SYSTEM MODEL

4.1 UAV-UAV Communications

The THz band does not show the same characteristics as
the GHz band in the conventional 4G and 5G networks.
Although 6G technology offers increased channel capacities,
the low wavelength restricts the communication range. This
limitation increases the challenge of maintaining uninter-
rupted interaction between the UAVs. To model the chan-
nels connecting the UAVs, we consider both Line-of-Sight
(LOS) and Non-Line-of-Sight (NLOS) signals. In case of LOS
communication, the signals suffer due to spreading (Aspr)
and molecular absorption (Aabs). Both (Aspr) and (Aabs)
are functions of carrier frequencies (fuav6G ) and distance
(duav6G ). The expression for (Aspr) is:

Aspr(f
uav
6G , duav6G ) =

(
c

4πfuav6G duav6G

)2

(1)

where c is the speed of light in vacuum. On the other hand,
the expression for (Aabs) is:

Aabs(f
uav
6G , duav6G ) = e−k(f

uav
6G )duav

6G (2)

where k(fuav6G ) is the molecular absorption coefficient at
fuav6G . Combining equations 1 and 2, we calculate the path
gain of the LOS signals (αLOS) as:

α2
LOS =

(
c

4πfuav6G duav6G

)2

e−k(f
uav
6G )duav

6G (3)

In case of NLOS signals, in addition to Aspr and Aabs,
the signals depend on the reflection coefficient (R(fuav6G ))
which further depends on Fresnal reflection coefficient
(F(fuav6G )) and Rayleigh roughness factor (ρ(fuav6G )) accord-
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ing to the expression: R(fuav6G ) = F(fuav6G ).ρ(fuav6G ). We
calculate F(fuav6G ) for smooth surfaces as:

F(fuav6G ) =
cos(θi)− nri

√
1−

(
1
nri
sin(θi)

)2
cos(θi) + nri

√
1−

(
1
nri
sin(θi)

)2 (4)

where nri is the refractive index of the material and θi is the
angle of incidence. We calculate ρ(fuav6G ) as:

ρ(fuav6G ) = exp

(
− 8π2(fuav6G )2σ2cos2(θi)

c2

)
(5)

where σ is standard deviation and follows Gaussian distri-
bution [3]. Using equations 4 and 5, we calculate the NLOS
path gain of the signals (αNLOS) as:

α2
NLOS = R(fuav6G ).Aspr(f

uav
6G , duav6G ).Aabs(f

uav
6G , duav6G ) (6)

Adding equations 3 and 6, we calculate the effective channel
gain h(fuav6G , duav6G )) as:

h(fuav6G , duav6G )) = αLOS +
KNLOS∑
j=1

αNLOS,j (7)

The channel gain in equation 7 is an important factor in de-
termining the data rate in the channel using the expression:

R6G
dr = B6G × log

(
1 +

p

NJN
(h(fuav6G , duav6G ))2

)
(8)

where B6G is the bandwidth of the channel, p is power of
the signal, and NJN is the Johnson-Nyquist noise, such that
N = kB × T × B6G. kB is the Boltzmann constant and
T is temperature. We use NJN to represent the noise as the
conventional Additive White Gaussian Noise does not effect
THz band as it does in the GHz band.

Delay among the UAVs: In either use of communication
technology (4G/5G/6G) by the user devices to connect
to the UAVs, the data needs to travel to the UAV and
then reach the destination access point through multi-hops
through the UAVs or via the satellite link. As mentioned
earlier in Section 1.2, we focus only on the data transmis-
sion among the UAVs. For data transmission from UAV
i to j, we account for the time for transmitting the data
(tUAVj

trans ), waiting time at the queue of the receiving UAV
(tUAVj

wait ), and the time for processing (tUAVj

head ) the packet
headers to determine forwarding rules. Using equation 8,

for data of size SUAVi

d from a UAV, tUAVj

trans =
S

UAVi
d

R6G
dr

. The

queueing delay of each data from ith UAV is dependent on
the arrival (Aj) and forwarding rate (Fj) at the receiving
jth UAV. From statistical analysis in [14], we consider Aj
to follow a Poisson distribution and calculate the waiting
time as t

UAVj

wait = 1/(Fj − Aj) [15]. The header reading
time is dependent on the clock cycles (pUAVj

freq ) of the UAV

processor and is calculated as tUAVhead =
S

pkti
d

p
UAVj
freq

. In summary,

the transmission time of the data from UAV i to j is: Time
needed for transmission:

t
UAVij

6G = xij(t
UAVj

trans + t
UAVj

wait + t
UAVj

head ) (9)

where xij is a binary variable that takes the value 1 for
transmitting from UAV i to j and 0 otherwise.

4.2 UAV to LEO satellite
The signals travelling from an UAV to a satellite suffers from
three phenomenons: 1) Doppler effect (∆fUAVLEO ), 2) Pointing
error (fPELEO), and 3) Atmospheric turbulence (fATLEO). The
UAVs fly at a certain height (hUAV ) from the Earth’s surface,
due to which the radius logically increases. We calculate the
radius as RUAV = (re + hUAV ). From RUAV , the shift in
frequency due to the the Doppler effect is:

∆fUAVLEO =
fUAVLEO dLEORUAV vasin(vat)

c
√
d2LEO +R2

UAV − 2dLEORUAV cos(vat)

(10)
where fUAVLEO is channel frequency of UAV to the LEO
satellite, dLEO is distance of the satellite from center of
earth, va is angular velocity of UAV, and t is time of flight
with va. Pointing error is typically negligible for terrestrial
base stations that are stationary. On the contrary, UAVs fly
freely with 6 degrees of freedom. This makes pointing error
an important factor for UAVs as they are not steady, giving
rise to scintillation. We calculate the pointing error as:

fPELEO(rb) =
rb
φ2
exp

(
− r2b + ψ2

2φ2

)
I0

(
rbψ

φ2

)
(11)

where rb is the beam radius, for angular deviations φj and
ψj are calculated as φ = φjdlnk and ψ = ψjdlnk with dlnk
as the length of the link. The dlnk is mathematically repre-
sented as dlnk = (dLEO−hUAV )sec(z) where z is the zenith
angle. The distribution of atmospheric turbulence may be a
gamma-gamma distribution or log-normal distribution [16].
As the log-normal distribution is popularly accepted for
atmospheric turbulence, we calculate it as:

fATLEO(C) =
1

C%1
√

2π
exp

(
− [ln(C) + 0.5%21]2

2%21

)
(12)

where %1 = exp(ω1 + ω2)− 1 and

ω1 =
0.49%22

(1 + 0.18d2 + 0.56%
12/5
2 )7/6

ω2 =
0.51%22(1 + 0.69%

12/5
2 )−5/6

1 + 0.9d2 + 0.62d2%
12/5
2

where d =
√
kD2/4dlnk with k = 2π/λ and %22 =

0.492k7/6S2
ATML

11/6. Here, λ is the wavelength and SATM
is the strength of the atmospheric turbulence, respectively.
Using equations 10, 11, and 12, we calculate the effective
satellite channel gain (hS) as:

hS = ∆fUAVLEO .f
PE
LEO(rb).f

AT
LEO(C) (13)

Similar to the argument in Section 4.1, we calculate the Data
rate in the UAV to satellite channels as:

RLEOdr = BLEO × log
(

1 +
pLEO
NAWGN

(hS(fuavLEO, d
uav
LEO))2

)
(14)

where BLEO is the bandwidth, pLEO is power of the signal,
and NAWGN is the additive white Gaussian noise.

Delay for UAV-LEO-GV Communications: We account for the
uplink transmission of data from the UAVs to the satellites
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(tLEOup ), the downlink transmission from the satellites to the
nearest AP (tLEOdown), and the queueing delay at the satellite
(tLEOwait ). We calculate the uplink delay for transmitting data
of size SUAVd to the satellites as tLEOup =

SUAV
d

RLEO
dr

. The ex-

pression for tLEOdown remains the same as that for tLEOup with
corresponding RLEOdr . We calculate tLEOwait using the same
arguments as in Section 4.1 as tLEOwait = 1/(FLEO − ALEO),
where FLEO and ALEO are the forwarding and arrival rates
at the satellite. Using these expressions, we calculate the
delay for the UAV-LEO-AP communication as:

tLEOAP = tLEOup + tLEOwait + tLEOdown (15)

The power of the downlink signal from the satellites is
relatively more powerful than that of the uplink signal [17].

4.3 Energy Consumption at the UAV
UAVs have to keep rotors running throughout their deploy-
ment, which needs significant amount of energy. Moreover,
the UAVs in this work act as BS for user devices, which
involves data reception and forwarding (to neighbor UAV
or satellite). We propose reserving some energy (ERESret ) for
the UAVs to return back to their base, which is dependent
on its position at time t. We allow the drones to operate
under the proposed scheme only when the residual energy
of the ith UAV at time t (REi(t)) along with ERESi

ret (Post)
satisfies the following condition:

REi(t)− ERESi
ret (Post) >

tiflighte
i
flight + wt

UAVij

6G e
UAVij

6G + (1− w)tLEOupi eLEOupi (16)

where w is a binary variable that determines whether to
forward the data to neighboring UAV or to the satellite.
We discuss the policy for determining the value of w in
the subsequent sections. Variables tflight, t

UAVij

6G , and tLEOupi
represent the flight and forwarding (UAV/satellite) times.
The eiflight, e

UAVij

6G , and eLEOupi are the corresponding energy
decrement rates. It may be noted that we exclude the energy
for reception of the signals. This is because power from
the receiving signal opens scope for new research works
that deal with energy harvesting and deflecting. Both the
methods have the potential to save energy as well as reduce
its consumption. Satellites on the other hand are equipped
with solar panels, which supply abundant amount of energy
to provide uninterrupted data transfer services and hence
we assume its seamless availability.

4.4 Cost and Reward Functions
We first define the cost function pertaining to each UAV for
forwarding the data to the next UAV or to the AP. We design
the UAVs to be aware of the time sensitivity nature of the
data from the users and from neighboring UAVs. The cost
function (CUAVi ) for each UAV is dependent on the time for
forwarding the data to the next UAV in equation 9 or to the
satellite in equation 15. Mathematically,

CUAVui
= wtUAV6G + (1− w)tUAVLEO (17)

We define the reward function based on the cost in equa-
tion 17. The system reward is only maximized when each

UAV minimizes its data forwarding cost, implying min
CUAVui

∀ui ∈ U . We define the reward of Q-learning system
for determining the data forwarding as:

max
m∑
i=1

Rui =
e1−C

UAV
ui

1− e1−CUAV
ui

(18)

The reward/objective function in equation 18 satisfies the
constraints in equation 16. Additionally, we also ensure that
the UAVs have enough cache memory (Mres

cache) to receive
the data from users or from other neighboring UAVs.

4.5 Methodology
We consider deployment of the UAVs to overcome commu-
nication voids in the network, implying the availability of
minimal number of proximal APs on the ground. We train
our Q-learning model to forward the data to the nearest
AP through multi-hops across the UAVs in the network.
However, based on tasks and location of the UAVs, they
may not be in contact with other UAVs or in some cases, an
entire cluster of UAVs may not be able to reach the ground
APs. We design our weights (w) in equation 17 as a function
of type of the time-sensitivity of the data from ui (τui ). In
the case of non-time-sensitive data, we wait for the UAVs
to come in contact with other UAVs (w = 1) which have
connection with the APs. In case of urgency, we forward the
data directly to the satellite (w = 0). Thus, In this work, we
consider τui = 0.5 for proof of concept. In summary,

w(τui) =

{
1, UAV-UAV communication.
0, UAV-LEO communication.

(19)

XiA may identify loops during route planning when there
is no path to the AP. In such situations, we directly assign
w = 0. In the worst case, XiA needsO(U3) time for learning,
where U is the number of UAVs. Further, we use a value
iteration-based RL model. For S states and A actions, XiA
has a computational complexity of O(A.S2) as it depends
quadratically on S and linearly on A [18].

5 PERFORMANCE EVALUATION

We derive the parameters pertaining to LEO communica-
tions based on the works of Di et al. [17] to maintain sim-
plicity and to avoid repetition. We then present the results
concerning the channel characteristics and the performance
of the proposed algorithm (XiA) compared to existing state-
of-the-art algorithms (Dijkstra).

5.1 Simulation Setup
In this work, we simulate the movement of the UAVs
using popularly available mobility models. Typically, Ran-
dom Waypoint and Gauss-Markov mobility models are the
most popularly used mobility models for Mobile Ad-hoc
Networks (MANETs). In this work, we are particularly
interested in simulating the movement of the UAVs, which
involves movement in 3D space. Moreover, since the UAVs
may move smoothly as well as abruptly, we require a mo-
bility model that offers the flexibility to do so. We consider
the above mentioned constraints and opt for the Gauss
Markov Mobility Model [19] to represent the movement of
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Table 1: Simulation parameters.

Parameter Value
Simulation area 10× 10 Km2

Communication range (6G) 3 m
Center frequency (6G) 0.5− 10 THz

Bandwidth (6G) 200− 350 GHz
Transmission power (6G) 10 dBm

Gamma 0.8
Data rate (LEO) [17] 4.9 Gbps

Receiver antenna 10× 10 Planar array
Data Size 250− 500 Mb

the deployed UAVs. This mobility model calculates the <
x, y, z > coordinates of the UAV according to the equation
Post+1

x,y,z = ξPostx,y,z +(1−ξ)Posx,y,z +
√

(1− ξ2)Postx,y,z
where Posx,y,z represents the < x, y, z > coordinates each
at time instant t and Posx,y,z is the mean coordinate po-
sition. The parameter ξ determines the variability in the
motion. Each of the UAVs vary their speed (s), direction
(θ), and pitch (p) as Pf t+1

s,θ,p = ξPf ts,θ,p + (1 − ξ)Pfs,θ,p +√
(1− ξ2)Pf ts,θ,p where ξ has its usual meaning. We set the

simulation parameters in Table 1 while executing XiA. As
we present our observations, we explain our bias towards
selection of the primary parameters.

5.2 Results
5.2.1 Effect Due to Molecular Absorption
We present the observations on the effect of molecular
absorption on the signal using the values of Aabs in equa-
tion 2. We observe the effects fue to Aabs in Fig. 3 with
varying center frequencies (0.5 − 10 THz) and distances
(1 − 10 meters). We observe that Aabs gives rise to spectral
windows in that have gains below −40 dB. We observe
minor absorption effects in the signals on using 3, 4, and
10 THz and a little higher effect in the case of 9 THz.
However, we observe a significant drop of below −120
dB in the signal in the case of 6 THz center frequency.
We comment that as the center frequencies get higher, the
Aabs gives rise to efficient frequency windows that have the
potential of transmitting signals with minimal effects. Based
on the transmission distance, one may have a clear idea
on which frequency range to use. Interestingly, the trend
remains the same across all frequency ranges as we increase
the distance. However, as the distance increases, the effect
of Aabs increases significantly, specially above 5 meters.

Implication: The selected communication radius of 3 meters
suffers from a maximum of −30 dB gain in all center
frequencies (from 1−10 THz), which enables us in assigning
any sub-channel in an OFDM [20] modulation setup.

5.2.2 Effect Due to Spreading
We present the observations on the effect of spreading on
the signal using the values of Aspr in equation 1. Fig. 4
depicts the spreading effects with varying frequencies (up
to 10 THz) over distances up to 10 meters. We observe that
the signals are less effected over short distances. However,
the signal quality drops rapidly as we increase the cen-
ter frequency. For instance, for a distance of 1 meter, the
spreading phenomenon effects the signal by almost 20%. It
is beneficial to keep low transmission distances to minimize

Figure 3: Effect of molecular absorption on the signal in the
atmosphere with changing frequencies and distances.

Figure 4: Effect of spreading on the signal with changing
frequencies and distances.

effects due to Aspr and a center frequency below 5 THz. As
we approach 10 meters, we observe an instantaneous drop
to below −120 dB on going beyond 2 THz.

Implication: In this work, we consider a maximum trans-
mission range of 3 meters, as discussed in Section 5.2.6.
This value of the communication range helps in limiting
the effects due to Aspr to below −120 dB for a wide range
of center frequencies. Typically, we observe safe usage of
up to 7 THz in Fig. 4. We may also go beyond to higher
frequencies, which we present on studying the overall path
gain in the next section.

5.2.3 Path Gain
We present the overall path gain based on equation 7 in Fig.
5 with varying frequencies and distances. Similar to that
in Fig. 3, we observe spectral windows in Fig. 5. However,
we notice that the quality of the signal drops below −40
dB on taking the overall effect of the environment on the
signal into account. We comment in a similar fashion as in
Section 5.2.1 that selection of center frequencies based on the
transmission range in beneficial, particularly in the ranges
[0.5 − 2.5], [3.5 − 5.5], [6.5 − 8.5], and [9.5 − 10] THz. For
distances of up to 4 meters, we observe a path gain above
−80 dB and those above 4 meters show signals dropping
to less than −130 dB. Moreover, we observe similar trends
for all the distances as in Fig. 3. Further, as we increase the
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distance, the path gain decreases significantly. For instance,
as we increase the distance of 3 meters to 10 meters, we
observe an effect of more than 60%.

Figure 5: Overall path gain in the THz band.

Figure 6: Data rate among the UAVs.

Implication: We observe in Fig. 5 that the transmission range
of 3 meters offers a maximum drop of the signal to −80 dB
at 6 THz center frequency. On the other hand, the path gain
remains below −80 dB for all other frequencies. We safely
fixate from our discussions in Sections 5.2.6 and 5.2.3 to a
transmission range of 3 meters. This range allows efficient
formation of network components among the UAVs in Fig.
8(c) as well as connectivity to the AP in addition to a
maximum path gain of −80 dB.

5.2.4 Data Rate
Using the parameters for finding the path gain in equation
7, we find the data rate with varying bandwidths using
equation 8. Fig. 6 depicts the possible data rates for the UAV-
UAV communications. Since we use 6G communication
technology, the bandwidth for each device is much higher
than the conventional 4G and 5G technologies. We vary the
bandwidth in the range of 100− 500 GHz and observe data
rates as high as 15 Tbps. As we vary the gain in our channel,
we observe a linearly increasing data rate. Based on these
values, we run our simulation and calculate delays.

Implication: Although higher bandwidths yield better data
rates, it also reduces the transmission range. Taking the
tradeoff into account, we limit our bandwidth to 200 − 350
GHz for our simulations and present the results.

Figure 7: Bit error rate among the UAVs.

5.2.5 Bit Error Rate

We consider the UAVs to be equipped with omni-directional
(N ) planar antennas. For the UAVs in the air, they receive
signals from the proximal UAVs along its cross section
which may approximately contain N antennas. We calcu-
late the bit error rate (BER) in the UAVs using BER =(2N−1

N

)
× ( 1

2SNR )2, where SNR is the Signal to Noise Ratio
and present the numerical results in Fig. 7. We observe that
the BER in the THz band is minuscule. As we increase the
channel gain, the BER further decreases. As we vary the
power of the transmitted signal, the same trend remains the
same for all values. As expected, we observe that the BER is
minimal for 10 dBm signal power.

Implication: We set the power of the signals from the UAVs at
10 dBm as it has the minimal BER. Although such increased
transmission power consumes a lot of battery power, it
decreases the BER significantly as the data arrives at a very
high rate. We plan to address optimized power allocation
according to the distance of neighboring UAVs in the future.

5.2.6 UAV Connectivity

We take an instant of 50 UAVs operating in our simulation
area and present them in Fig 8. It may be noted that
although the UAVs in this work have 3D coordinates, Fig 8
depicts the top-view of our deployment area. We represent
the UAVs as red circles/nodes and an AP at the center of
the right corner edge in blue. The overlapping UAVs do
not represent crashes as they are flying at different heights.
We vary the communication range from 1 − 5 meters in
Figs. 8(a)–8(e). We observe that for 1 (Fig. 8(a)) and 2 (Fig.
8(b)) meters communication range, the UAVs form multiple
disjoint components/clusters that do not have a path to the
AP. Such communication ranges forces the UAVs to always
opt for the satellite communication, which is expensive (in
terms of delay) and rapidly drains the batteries. On the
other hand, in the case of 4 (Fig. 8(d)) and 5 (Fig. 8(e))
meters communication range, we observe that the UAVs
are over-connected with links, which causes interference
in the signals. On the other hand, in the case of the 3
meter communication range, a majority of the UAVs have
a path to the AP and give rise to only a small number
of clusters. Moreover, although beyond the scope of this
work, the clusters in the 3 meter communication range are
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(a) Range: 1m (b) Range: 2m (c) Range: 3m (d) Range: 4m (e) Range: 5m

Figure 8: Comparison for connectivity among 50 UAVs (red) with varying communication ranges in 3D space with one
access point (blue) as sink.

Figure 9: Rewards while training the model with changing
gamma (exploration coefficient) values.

large enough to allow the formation of cluster heads to
collect and transmit data from the proximal UAVs to the
satellite. It may be noted that as we increase the number
of UAVs in the network, the connectivity in the swarm will
improve, resulting in lesser number of disconnected clusters
and improved paths to the AP. Such conditions will help in
reducing the delays for data forwarding.

Implication: We account for the effects of molecular absorp-
tion, spreading, and path gain of the signals in the THz
band discussed in Sections 5.2.1, 5.2.2, and 5.2.3. We also
consider the bit error rate (Section 5.2.5) and avoid the issues
of multiple disconnected components and over connectivity
by assigning a communication range of 3 meters (Fig. 8(c))
for the UAVs, which has a perfect balance for the connected
and disjoint components. The UAVs that have a path to the
AP through intermediate relays use the UAV-UAV commu-
nication to forward the data. In contrast, the UAVs in the
disconnected components forward the data using UAV-LEO
communications. It may be noted that although the 4 meter
range has better connectivity (Fig. 8(d)), the additional 1
meter has significant effect on the quality of signal.

5.2.7 Rewards
We set the rewards in the R matrix of the Q-learning model
according to equation 18. As the reinforcement learning
model gives us the flexibility of deciding the intensity of
dependency on immediate and future rewards using the
Gamma variable, we present our bias for its selection. Fig.
9 presents the rewards on training with different Gamma
values. We observe that we achieve convergence on all
values of Gamma. However, in the case of Gamma = 1, the

reward values are fluctuating and still shows an increasing
trend on running for 25000 iterations.

Implication: Although we observe convergence for all
Gamma values, we select the one that achieves highest
rewards while reaching convergence, implying Gamma =
0.8. The rest of the results are based on the observations
from this Gamma value.

5.2.8 Delay and Hop Count

We present our observations on executing XiA and compar-
ing it with the state-of-the-art Dijkstra’s shortest path algo-
rithm and routing in Flying ad-hoc network using RL (FAN-
RL) [21]. FAN-RL is a similar approach on a 5G environment
and we consider bandwidths of 100-400 MHz with trans-
mission ranges of 30 meters, transmission power of 10 dB,
and unit noise for simulation. Interference and noise does
not effect 6G communications in the same way as it does
in conventional communication technologies in the GHz
band. Accordingly, we relax the communication constraints
and focus on the links and the shortest path available, for
which, Dijkstra’s algorithm is the most popular technique.
Since the proposed work is tailored to be delay-aware, we
focus on the transmission delays and the corresponding hop
counts for both cases. We observe similar results for XiA
and Dijkstra’s algorithms when there exists only one path
from the subject UAV and the AP. We also observe similar
results when the UAVs offload their data to the satellite.
In all the other cases, we observe that XiA offers better
delays as XiA accounts for a number of features like the
channel conditions and device configurations in addition
to distance. On the other hand, Dijkstra’s algorithm only
depends on the distance between the UAVs. We tabulate
our results pertaining to lower delays in case of XiA in
Table 2. Although the number of hops is the same for both
XiA and Dijkstra, we observe that XiA reduces the delay by
a maximum of 15.51% and a minimum of 4%. Moreover,
we observe in the fifth (second last) row that the Dijkstra’s
algorithm sometimes fails to find the shortest path and opts
for sending the data to the satellite. This selection of the
satellite increases the delay by 99% and also consumes a
significant amount of battery, which although rarely occurs,
it is undesirable. In the last row we observe that both XiA
and Dijkstra’s algorithm opt for the satellite, which renders
equal delays. This is because no other path exists to the
AP. On the other hand, in comparison with FAN-RL, we
observe 99% improvement in delays in all cases. Although
no satellite communications is necessary because of the
longer communication links, the higher delays are because
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Table 2: Comparison of XiA with existing state of the art solutions.

XiA
Delay (s)

Dijkstra
Delay (s)

FAN-RL
Delay (s)

Improvement
(Dijkstra)

Improvement
(FAN-RL)

XiA
Hops

Dijkstra
Hops

FAN-RL
Hops

XiA-
LEO

Dijkstra-
LEO

FAN-RL-
LEO

1.78e-10 2.10e-10 1.42e-06 15.23% 99.98% 6 6 3 7 7 7
1.94e-10 2.25e-10 8.88e-07 13.77% 99.97% 5 5 3 7 7 7
1.37e-10 1.57e-10 1.09e-06 12.73% 99.98% 5 5 3 7 7 7
3.63e-10 3.79e-10 1.42e-06 4.42% 99.97% 8 8 3 7 7 7
1.96e-10 2.04e-07 7.94e-07 99% 99.97% 5 – 2 7 3 7
1.62e-07 1.62e-07 9.5e-07 0% 82.94% – – 3 3 3 7

of the lower bandwidths (in the MHz range). In the last row,
even though XiA could not find a direct route to the AP, it
demonstrates an 82% improvement over FAN-RL. We also
notice lower number of hops (2-3) in FAN-RL due to longer
communication ranges. It may be noted that we run our
experiments multiple times and discuss on the minimum
delays and situations when there are no paths to the AP.

Implication: We conclude that XiA outperforms conventional
shortest path algorithms in terms of delays by notable
margins, which is the main motive of this work. We also
comment that XiA has the potential to find the fastest path
in the presence of multiple other paths. The improvement
over FAN-RL is well expected and is the main reason for
adopting 6G networks and features such as beamforming,
small cells, and MIMO are best fit for UAV networks.

6 CONCLUSION

In this work, we proposed a QL-based routing algorithm
named Send-it-Anyway (XiA). The X in XiA represents any
mode of communication. We considered a communication
void or disaster-hit area where the UAVs deployed from
a GV send data to a nearest AP. Towards this, we de-
signed a reward function that minimises the time required
for forwarding the data to the AP through multiple relay
UAVs by considering the channel conditions and device
configurations. In case the UAVs do not have a path to
the AP, they send the data to a LEO satellite which then
forwards the data to the AP. Through extensive simulations,
we presented our bias for the simulation parameters and
demonstrated how XiA performs in comparison to the state-
of-the-art Dijkstra’s algorithm. In comparison with state-
of-the-art solutions, we demonstrated that XiA offers an
improved delay of 82%. In the future, we plan to extend
this work by incorporating more ground-level APs. We also
plan to use group mobility models to observe the behavior
of XiA under different conditions.
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