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Abstract—We propose a method for a single ground
camera-based visual gesture control of a quadrotor mUAV
platform, making its �ight more responsive and adap-
tive to its human controller as compared to a human
controller using keypads or joysticks for controls. The
proposed camera-based gesture control scheme provides
an average accuracy of 100% gestures detected, as com-
pared to accuracies obtained using expensive Kinect-
based hardware, or processing intensive CNN-based pose
estimation techniques with 97.5% and 83.3% average
accuracies, respectively. A fog-based stabilization mech-
anism is additionally employed, which allows for �ight-
time stabilization of the mUAV, even in the presence
of unbalanced payloads or unbalancing of the mUAV
due to minor structural damages. This allows the use
of the same mUAV without the need for frequent weight
readjustments or mUAV calibration. This approach has
been tested in real-time, both indoors as well as outdoors.

Index Terms—mUAV controls, Gesture-based control,
UAV stabilization, Fog-based stabilization.

I. I�����������
An Unmanned Aerial Vehicle (UAV) is a pilot-less

�ying vehicle or platform, which depends on remotely
stationed pilots or autonomous algorithms for navigation
and guidance. In this paper, we restrict our work to
quadrotor micro UAVs (mUAVs), which have a twin-pair
of �xed pitch, counter-clockwise rotors, located at four
distal ends of the aircraft. The use of autonomous/semi-
autonomous control makes it easy to handle the multi-
rotors by a wide variety of users ranging from novice
to experts. The use of autonomous platforms has appli-
cations in search and rescue operations, communication,
surveillance, as well as military operations. However, in
certain challenging scenarios – survivor localization in
damaged buildings, checking the extent of damage, the
presence of hazardous fumes in buildings or caverns –
the most optimal solution is manual control. Manual
control can easily account for the unknown nature of the
�ying environment in the path of a mUAV, in which au-
tonomous algorithms fail, as these algorithms are mostly
tailored for the general environment. A more robust
algorithm for mUAVs requires the inclusion of more
sensors to the mUAV system. This not only increases the
mUAV’s payload, thereby a�ecting its maneuverability,
but also reduces its �ight time due to the additional
power requirements. The mUAVs deployed in such sce-
narios are generally minuscule, supporting only bare-
basic sensors to allow for their restricted payload and
easy navigation within con�ned spaces. In this paper,
we present a line-of-sight based control method for
mUAVs using visually recorded human-re�exive gestures.

It is shown that gesture-based re�exive controls [1]
provide more agility and better control as compared to
joystick-based controllers [2]. The additional inclusion
of fog-based gesture detection and control generation
for the mUAV further enhances the UAV’s capabilities.
The command and control method of these mUAVs play
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Fig. 1: A graphical work-�ow for the proposed method
an important role in various mission-speci�c tasks. Op-
eration of these quadrotors in GPS denied situations –
indoors, and cloudy outdoor conditions – visually guided
navigation is the only precise approach. However, in
scenarios where a fast and e�cient deployment of these
mUAVs is required, dependence on external camera-
guided navigation is not feasible. A visual line-of-sight
(LOS) based manual control approach provides robust and
precise control in previously uncharted and hazardous
terrains without proving heavy on the mUAV processing
and energy. Therefore, in our work, we keep the gesture-
detection interface as simple as possible by choosing a
video-based re�exive gesture detection method, which
has a simple interface and avoids errors due to sudden
or jerky movements, as is true with motion sensor based
gesture detection units.

A. System Description
In our work, a quadrotor mUAV is tethered to a fog

node (here, a computer) over a 2.4GHz wireless radio
link, allowing the computer to send commands to the
mUAV and the mUAV sensor values to be received by the
fog node. The computer is set-up with a camera which
allows a human-controller to manipulate the mUAV’s
�ight based on re�exive hand-gestures to the camera.
These simple visual gestures are translated to mUAV
control sequences after being processed by a simple
image-based gesture detection algorithm on the fog node.
The functional steps used in our work are enumerated
concerning Fig. 1 as follows:
1) A human user wearing a colored glove (Blue),

gestures in front of the imaging device. For this
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work, the gestures are restricted to a few directional
movements of the gloved hand only – Up, Down,
Left, and Right.

2) The imaging device is connected to a fog processing
unit, which detects human-hand re�exive gestures
using color-tracking.

3) Control signals for the mUAV are generated based
on the detected gestures and are forwarded to a
transmitter or radio module.

4) The radio module scans the presence of the mUAV,
connects to it, and then forwards the control signals
to it.

5) The mUAV interprets the control signals and actu-
ates its motors accordingly.

6) The mUAV’s onboard sensors periodically poll the
system �ight parameters ( , ✓, �) and status. These
are then forwarded to the radio.

7) The radio returns the forwarded status signals to
the processing unit, which interprets it and checks
against the next set of control signals. Steps 3 to 7
form a closed loop control system, which stabilizes
the mUAV and balances it. This protects the mUAV
against external disturbances, as well as sudden and
false over-actuation.

B. Contributions
The following are the contributions of our work:
1) A method for visual re�exive gesture-based con-

trol for enhancement of visual-range operational
mUAV control has been developed, which works
both indoors (under supervised lighting conditions)
as well as outdoors (under unsupervised lighting
conditions).

2) A network-based stabilization method has been ap-
plied, which detects and adjusts excessive imbalance
due to �ight maneuvers, or external factors like
wind, or inter- nal factors like sensor noise, or
structural damage.

II. R������W����
Ongoing works in the �eld of manual or semi-

autonomous UAV control include gesture-based controls.
Several gesture-based UAV control approaches use the
popularly worked upon Kinect-based 3D-gesture recog-
nition system for interaction with UAVs [3]. Lementec
et al. [4] propose a gesture-based control system for
UAVs using multiple orientation sensors. They imple-
ment it in a laboratory environment. In the previously
mentioned works dependent on gesture recognition for
remote control of a system, the task of utmost criticality
is the correct detection of gestures and its translation to
control signals. Valiallah et al. [5] implement a computer-
vision based gesture recognition system to control UAVs
in a multi-robot system. However, these systems either
require an elaborate and costly setup or are con�ned to
operations within a very close range.
The generation of control signals for remote oper-

ation is followed by stabilization of the UAV, which
may be either sensory stabilization or stabilization of
the system as a whole. UAV stabilization concerning
its position and attitude have been extensively studied

[6]. Previous works on UAV stabilization have mostly
focused on hardware-based stabilization. Ho�mann et al.
[7] implemented a �ight control system for a quadrotor
helicopter test-bed. They used a feed-forward compensa-
tion to serve aerodynamic �ight motions for the e�ective
rejection of large systematic disturbances. Their feed-
forward compensation through the control loops of a
STARMAC quadrotor protects the platform from any
uncertainties in the model. In the control system of a
small helicopter, Roy et al. [8] used an inner (position
control)– external (altitude control) looped structure that
stabilizes the hover �ight of a UAV in the presence of
wind-gusts. The outer loop is designed for robust back-
stepping to control translational trajectory, while the
inner loop employs a PID-controller for the stabilization
of the UAV altitude. Similar works by Vinaykumar [9]
report better results with Kalman �lter on UAV control
systems as compared to Alpha-Beta �lters.

Synthesis: Vis-a-vis the works mentioned above and
many more, our system provides a computationally ef-
fective, low-cost, easily deployable system for gesture-
based control of mUAVs which achieves excellent results
— both indoors as well as outdoors. Additionally, our
approach works equally well on stabilized mUAVs as well
as destabilized ones. Our approach does away with the
need for mUAV recalibration or load readjustment each,
and every time the UAV su�ers minor damages.

III. UAV D�������

A. Flight Dynamics

Quadrotor mUAVs are generally four rotor aerial ve-
hicles, each of which provides angular velocities !

i

to
the mUAV for its motion. The four rotors are grouped
diagonally into pairs of two. One pair rotates in the
clockwise direction and the other pair in the anti-
clockwise direction. This con�guration cancels out the
overall rotating e�ect of the rotors over the mUAV,
thereby stabilizing it. The �ight of mUAVs are generally
governed by four parameters – roll, pitch, yaw and
thrust. For a linear velocity v, the drag force F

D

on
the mUAV is calculated as 1

2 ⇢C
D

Av2, where ⇢ is the
environmental mean �uid density, A is the sweep-area
of the mUAV’s rotor blades, and C

D

is a dimensionless
constant. For an angular velocity !, rotor-blade radius
R and proportionality constant b, the torque due to the
frictional drag ⌧

D

is calculated as b!2. Assuming a point
source for force, the torque ⌧

z

required along the z-axis
is calculated as b!2 + I

M

!̂, where I
M

is the moment of
inertia, !̂ is the angular acceleration of the rotor, and b is
the drag coe�cient. Simplifying and assuming a steady
�ight, the total torque along yaw-axis (⌧ ) is given by
b(!2

i

� !2
j

+ !2
k

� !2
l

).
Similarly, assuming any two motors i and j lying

along the roll axis, the roll torque (⌧�) is given as
Lk(!2

i

� !2
j

), and the corresponding pitch torque ⌧✓ is
calculated as Lk(!2

k

� !2
l

). In these equations L is the
distance between the center of gravity of the quadrotor
mUAV and any of the four rotor centers. The anti-
clockwise and clockwise motions require equal thrust on
the four motors, numbered from 1 to 4. The motion
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along the z-axis is achieved by the change in propeller
pair velocities. The resultant angular velocity for the
corresponding motor, k = 1, 2, 3, 4, is denoted by !

k

.
In case of actual motion along the xy-plane, during left
or right motion, the two of the opposite motors should
have the same !

k

|k 2 [1, 3], [2, 4]. However, the adjacent
motors should have varying !

k

such that the following
condition is satis�ed:

!
k

|k 2 [1, 3] , !
k

|k 2 [2, 4] (1)
B. Sensor Stabilization
During an mUAV’s �ight the on-sensors such as the

gyroscopes providing the mUAV’s orientation have a
tendency to drift away from their initial calibration and
need a constant stabilizing algorithm to counter this
drifting e�ect. The on-board mUAV sensors are stabilized
using a derived form of Kalman �lter. This is used to
estimate the parameters of interest, in our case, the on-
board derived sensor values –  , ✓, �. The Kalman �lters
need only the previous and current state values to predict
the correction parameters for future states. Considering
the yaw axis, the state estimate for yaw ( ) is denoted
by  ̂(k |k). Thus,  ̂(k + 1|k) is the estimation parameter
for the immediate future step  (k + 1) such that

 ̂(k + 1|k) = F(k) ̂(k |k) + G(k)z(k) (2)
where  ̂(k |k) is the historical prediction value. F(k)
and G(k) are experimentally determined constants. This
estimation correction parameter is then used to predict
the change in measurements needed, and is represented
as ẑ(k + 1|k) = H(k) ̂(k + 1|k). The state estimate is
again updated during a second iteration, and is denoted
by  ̂(k+1|k+1), which equals  ̂(k+1|k)+w(k+1)v(k+1),
where v(k + 1) is the measurement residue. For an
expectation matrix H(k), the Kalman �lter gain is given
by w(k + 1) and is calculated as

v(k + 1) = z(k + 1) � ẑ(k + 1|k) (3)
W(k + 1) = P(k + 1)P(k + 1|k)H(k + 1)0S(k + 1)�1 (4)

The error covariance of the state estimates for the el-
ements are denoted by P(k |k) for z(k), z(k � 1), and
P(k + 1|k) for z(k + 1), z(k). Additionally, the error esti-
mation parameter is denoted by S(k + 1). The prediction
estimation P(k + 1|k) and error estimation S(k + 1) are
calculated as F(k)P(k |k)F(k)0 +Q(k), and H(k + 1)P(k +
1|k)H(k +1)0 +R(k +1), respectively. Thus, the estimated
parameter value  ̂(k+1|k+1) is a measure of the amount
of compensation that is mixed with the yaw readings to
make them reliable. Similarly, the estimated parameter
values for pitch (✓) and roll (�) are given by ✓̂(k+1|k+1)
and �̂(k + 1|k + 1), respectively.
C. UAV Stabilization
The mUAV is stabilized by using the Proportional-

Integral-Derivative (PID) controller scheme. The three
correcting terms, viz., the proportional term, the integral
term, and the derivative term are summed up to formu-
late the output as

u(t) = K
p

e(t) + K
i

π
t

0
e(⌧)d⌧ + K

d

de(t)
dt

(5)

Here, K
p

,K
i

& K
d

are constants of proportionality, and
e(·) is a time-varying parameter, such that e(·) 7�! f (t).

The Laplace transform (L(s)) of the above function is
K
p

+ K

i

⌘ + K
d

⌘, such that ⌘ is the complex number
frequency. The proportionality constants – K

p

,K
i

& K
d

–
are tuned manually until the optimum values are reached,
which stabilizes the mUAV �ight.

IV. V����� G������ D��������
Gesture detection by visual means initially involves

the acquisition of a three-channel Red-Green-Blue (RGB)
color-image (I 2 (m ⇥ n ⇥ 3)). A color-mask based
background subtraction operation is performed, and the
modi�ed image is converted to a single channel gray-
scale image (I 2 (m ⇥ n ⇥ 1)). Subsequently, white noise
is removed using blurring and morphological transfor-
mation on the gray-scale image. A threshold operation
is then performed on the gray-scale image to obtain a
binary image such that I(m ⇥ n)|m, n 2 (1, 0). Subse-
quently, a blue-color tracker is implemented for inferring
the direction of motion of the blue-gloved hand. Since
the RGB color space is highly susceptible to lighting
changes, we port the image into the Hue-Saturation-
Value (HSV) color space, which is much more stable
than the RGB color space. A color-mask is prepared in
the blue spectrum, which masks everything other than
blue objects. For each of the pixels in the image I(t), its
value is obtained and is then subtracted with the pixels
corresponding to the ones in the mask range value at
the same position, and is denoted by I( f ) = I(t) � I(m),
where I( f ) is the �nal image obtained after applying the
color mask.

A. Threshold and Binarization
The 3-channel HSV image is converted to gray-scale

intensity image (I( f )
m⇥n⇥p), which discards the hue and

saturation values. The gray-scale image is then binarized
using an unsupervised method, which considers the 0th
and the 1st order cumulative moments of the gray-scaled
image histogram. This converts the image pixels from
8-bits to 1-bit binary values, optimizing both spatial
and temporal requirements for future calculations. The
threshold range for image binarization is calculated by
minimizing the weighted within-class deviation (�2

w

(t)),
where t is the threshold value calculated experimentally.
The weighted within-class deviation is calculated as

�2
w

(t) = q1(t)�2
1 (t) + q2(t)�2

2 (t) (6)
For the probability of background class occurrence, de-
noted by P

i

, q1(t) and q2(t) are given by
Õ

t

i=1 P(i),
and

Õ
I

i=t+1 P(i), respectively. We consider the variables
µ1(t),�2

1 (t) and µ2(t),�2
2 (t) such that

µ1(t) =
t’

i=1

iP(i)
q1(t)
, �2

1 (t) =
t’

i=1
[i � µ1(t)]2

P(i)
q1(t)

(7)

µ2(t) =
I’

i=t+1

iP(i)
q2(t)
, �2

2 (t) =
I’

i=t+1
[i � µ2(t)]2

P(i)
q2(t)

(8)

The threshold, thus obtained, is applied on the image
I( f )

m⇥n⇥p , which converts it into a single-channel image
I( f )

m⇥n. This operation is mathematically represented as
I( f )

m⇤n, which is similar to I( f )
m⇥n⇥p ⇥ �2

w

(t). In the
rest of the paper, I( f )

m⇥n is denoted as I for ease of
representation.
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B. Image Noise Filtering

A blurring operation followed by a morphological
transformation of the blurred image is performed to
rule out the e�ect of noise in detecting gestures. The
gray-scale image I is passed through the �rst round of
�ltering, which is the blurring phase. The image pixels
are convolved with a kernel ( f (x, y)), which is described
by a Gaussian Function in two-dimensions. This results
in smoothing of edges and removal of pixel-level aber-
rations. For cells (n) in the �attened image matrix, the
convolution function is mathematically represented as

f (x, y) ⇤ I[n] =
1’

m=�1
f [m].I[n � m] (9)

The Gaussian kernel f (x, y) is generated as
I.exp(�( (x�x02)

2�2
x

+
(y�y02)

2�2
y

)), where the amplitude is
denoted by the pixel intensity, the center as (x0, y0), and
the standard deviation is denoted as (�

x

,�
y

) in the x
and y axes, respectively.
The morphological transformation uses mathematical

set theory for the analysis of images. The blurred image
I( f ) is convolved with a kernel B, such that the minimal
pixel value overlapped by B is assigned as the new value
I B to that anchor point such as {z 2 E |B

z

✓ I}, where
B
z

is the vector z’s translation of kernel B and equals {b+
z |b 2 B}, 8z 2 E . This entire transformational operation
is often termed as opening of the image. Opening results
in the removal of multi-pixel aberrations or specks caused
due to Gaussian noise. The image obtained at the end of
this pipeline is mostly free of commonly a�icting noise
in digital images.

C. Gesture Detection

Eventually, gesture detection and its subsequent recog-
nition, involves the identi�cation of the target gesture
object. The gesture is computed using an oriented gra-
dient signal, denoted by G(x, y, ✓

a

), for a binary image
I. The algorithm executes by anchoring a circular disc
at the x, y coordinates, which is divided into two semi-
circular discs inclined at an angle ✓

a

to each other. The
gradient G is de�ned by �2 and is given as

�2(g, h) = 1
2

1’
i

(g(i) � h(i))2
g(i) + h(i) (10)

The cell coordinates are denoted by g(i) and h(i), where i
is the distance of the center of the circular disc to a point
of interest in the image matrix. The result obtained is a
possibility matrix for the position of the target object.
A 2nd order Savitzky-Golay �lter is applied to enhance
and smoothen the detection zenith’s orthogonal to the
angle ✓

a

. This operation increases the signal-to-noise
ratio. This �ltering is adapted here to remove noise in
the probability distribution without distorting the matrix
elements beyond permissible limits. This operation is
mathematically abstracted as

Y
j

=

+
(m�1)

2’
i=� (m�1)

2

I
i

y
j+i,

(m + 1)
2  j  n � (m � 1)

2 (11)

=
1
35 (�3y

j�2 + 12y
j�1 + 17y

j

+ 12y
j+1 � 3y

j+2) (12)

where I(x, y) is a set of n tuples in the gradient matrix,
y is a dependent variable governed by x, and is treated
as a set of convolution coe�cients. This matrix is then
compared with the previously available gradient matrix
to determine the course of movement, and eventually
detect the directional gesture being executed by the user.

V. M����������
The camera being used for detecting visual gestures

records images at a rate of 30 frames per second (fps).
This rate is too fast for generating command signals,
which for our case, should be at a maximum rate of
10Hz, which corresponds to the mUAV’s sensor polling
rate. An approximation function takes the mode of 10
consecutive frames and outputs the detected gesture as
a signal to the mUAV at a rate of 3Hz, which for
our implementation is su�cient to control the mUAV
without over-whelming its sensors. The proposed method
is applied to the open-source micro-UAV platform –
Crazy�ie. A regular o�-the-shelf webcam is used for
gesture detection. The experimental �ight tests are done,
both indoors, under controlled lighting conditions and
environment, as well as outdoors, under natural day-time
lighting and environmental e�ects – winds and external
EM noise. To gauge the e�ectiveness of our approach,
we used an unbalanced mUAV, with an additional load
on the front right quadrant of the mUAV.

A. mUAV Fog-based Stabilization
Real-time UAV �ights pose some serious challenges

as, if the UAV is unbalanced, the gyroscopes tend to
drift away, resulting in the UAV turning turtle. To avoid
such occurrences, a secondary fog-based stabilization
mechanism is implemented, besides the regular hardware
stabilizers. The telemetry data generated on-board the
mUAV is fed-back into the gesture recognition system
on the fog node. These telemetry values are used for
generating new PID values, which are sent to the mUAV.
It is a multi-step process, which begins with the gen-
eration of an estimation of the PID values required to
�y the mUAV according to the user’s visual gestures.
The current values are used for generating an error
estimate �. For an estimated value E, and feedback value
F , this error estimate is the correction needed in the
�ight stabilizers, and is given by � ,✓,� , which equals
(E ,✓,� � F ,✓,�)(E ,✓,�)�1. The � obtained is used as
the correction parameter to generate the new pitch, roll
and yaw values ✓

correct

= ✓
f eedback

+ �✓ , �correct =
�
f eedback

+ �� , and  
correct

=  
f eedback

+ � . Finally,
these compensated telemetry values are fed back into the
mUAV for a stable �ight.

B. mUAV- Gesture Control Loop
The mUAV stabilization system is forked into two main

branches – 1) stabilisation of the mUAV as whole, and
2) stabilization of the on-board sensors. The sequence
of events during over-the-network stabilization of the
mUAV are represented in Fig. 2, and enumerated sequen-
tially in the following stages:
Stage-0: The mUAV initializes with its original PID con-

stant values (K
p

,K
d

,K
i

). The initialization starts the
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Fig. 2: The control system loop for our proposed method

on-board data-logging process, which starts polling
all the sensors and actuators connected to the sys-
tem.

Stage-1: The process generates the  
t

, ✓
t

, �
t

values,
which is the initial value at time t = 0, and generally,
quite unstable.

Stage-2: A Kalman �lter based hardware stabilization is
applied which generates stabilized sensor outputs.
The stabilized outputs derived from the parameters
corresponding to the orientation sensor – Gyroscope
– at instant k is given as  ̂, ✓̂, �̂, for the instant k+1.
These state estimates are transmitted to the remote
control-station over a radio-link.

Stage-3: The received state estimates from the mUAV
are used to estimate the error between the state
estimated value and the feedback value from the
mUAV. The generated error � ̂,✓̂,�̂ is forwarded to
the next processing block.

Stage-4: A gesture-control generator generates control-
signals for the mUAV in the form of  , ✓, � values.
These generated values from the gesture control
generator are referred to as  

f

, ✓
f

, �
f

, respectively.
Stage-5: The  

f

, ✓
f

, �
f

values, along with the error
estimate � ̂,✓̂,�̂ , are used for computing the corrected
command signals, which are sent to the mUAV over
the radio link in the form of  

c

, ✓
c

, �
c

.
Stage-6: For t > 0, the updated  

t

, ✓
t

, �
t

control the
mUAV and the whole cycle repeats from Stages 1
to 6.

VI. E����������� R������
We divide this section into two parts for adjudging the

– 1) e�ectiveness of gesture detection, and 2) e�ective-
ness of the fog-based stabilization on the mUAV. It is to
be noted that only a part of the temporal telemetry values
of the mUAV’s �ight parameters  , ✓, � are represented
for ease of interpretation.

(a) Indoors (b) Outdoors

Fig. 3: Performance of various hand gesture detection
without gesture approximation.

A. E�ectiveness of Gesture Detection

Fig. 3 shows the performance of visual detection of
gestures under various environments. Speci�cally, Figs.
3(a) and 3(b) depict the performance of gesture detection
algorithms in indoor and outdoor environments, respec-
tively. Fig. 3(a) shows the comparison of correct and
incorrect detection instances of various gestures in an
indoor environment, with stable lighting conditions. The
incorrect detections appear for a fraction of a second
and are attributed to little involuntary variations of the
human hand concerning a comparatively faster image
capturing device. Similar to the indoor environment, the
gesture-detection method, when tested outdoors, pro-
vides the statistics shown in Fig. 3(b). Unlike the indoor
environment with controlled lighting conditions, the out-
door gesture-detection proves to be more challenging.
However, the �xed color-tracking of the gloved hand
proves bene�cial for outdoor gesture detection. Same as
before, the approximation algorithm reduces the chance
of the erroneously detected gestures to be translated to
mUAV commands.

Fig. 4: Comparison of minimum gesture detection accu-
racies of the proposed scheme with other approaches.

Fig. 4 compares the e�ectiveness of the proposed
gesture approximation method with the usual approach.
Two additional methods are also compared with our
approach — an expensive Kinect-based gesture detection
scheme, termed Many Parameters Restriction Algorithm
(MPRA), and a computationally expensive CNN-based
pose estimation method. It is seen that the CNN-based
pose estimation [10], and the MPRA-based UAV control
scheme [11] give minimum gesture detection accuracies
of 83.3% and 97.5%, respectively. Vis-a-vis, the proposed
gesture detection approach without gesture approxima-
tion has a minimum correct detection accuracy of 77.4%,
and with the gesture approximation scheme, which takes
the mode of the gestures detected, achieves an accuracy
of 100% due to exclusion of outliers generated as a result
of chance misdetections.

(a) Uncompensated Indoors (b) Compensated Indoors

Fig. 5: E�ect of network feedback on gesture-based con-
trol of mUAV under controlled indoor lighting conditions.
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B. E�ectiveness of Stabilizing algorithm

Fig. 5 shows the mUAV �ight parameters during
gesture-based control in an indoor environment. The
�ight tests are carried out for two gestures – left and
right. Figs. 5(a) and 5(b) represent the mUAV �ight pa-
rameters during left gesture as command for unstabilized
and network stabilized methods, respectively. In Fig. 5(a),
it is seen that, upon detection of the control signal to
move left, which primarily changes the yaw ( ) of the
mUAV, the sensor values change and stay in negative
yaw for some time (20ms approx.) before returning to
the positive yaw axis. The pitch (✓) and roll (�) values
change because of the unbalancing load attached to the
mUAV. However, in Fig. 5(b) it is seen that  changes
gradually, allowing for much smoother control of the
mUAV, as compared to the un-stabilized approach. The
other associated parameters, ✓ and �, show transgression
from their stable value, but recovers quickly due to our
implemented network-based stabilization. It is observed
in our test �ight that the mUAV sensors tend to overload
and freeze beyond a certain value (�, ✓, = ±180�).
Providing control signals to the mUAV and forcing it to
move in the same direction repeatedly, in an un-stabilized
mUAV, causes it to lose control and veer-out uncontrol-
lably. These sensor overloading and freezing problems
are also avoided using our network-based stabilization
approach.

(a) Uncompensated Outdoors (b) Compensated Outdoors

Fig. 6: E�ect of network feedback on gesture-based con-
trol of mUAV during uncontrolled lighting conditions in
an outdoor �ying environment.
Fig. 6 shows the mUAV �ight parameters during

gesture-based control in natural lighting during outdoor
�ight. Figs. 6(a) and 6(b) represent the mUAV �ight
parameters during left gesture as command for the un-
stabilized and fog stabilized methods, respectively. In
Fig. 6(a), upon receiving the control signal for turning
left, for a larger duration of time, the sensory overload
at t = 125ms. This overloading a�ects the � values,
causing it to behave abruptly, which eventually results in
a crash. Crossing the ±180� causes the mUAV to become
uncontrollable, and eventually crash. It is noteworthy to
mention that the mUAV sensors tend to overload, which
is attributed to the e�ect of wind on it. This causes
the mUAV to be already unbalanced, even before getting
control signals from the user. However, using the fog-
based stabilization, as shown in Fig. 6(b), even the e�ects
of wind do not destabilize the mUAV as is evident from
the � and ✓ values of the mUAV’s �ight. The e�ects of
wind can be seen from the hump and valleys formed
between t = 90 � 150ms in the � and ✓ values of Fig.
6(b).

VII. C���������
The work presented in this paper uses a low-cost

approach, requiring minimal set-up time to establish a
gesture-based control of a mUAV, which can be used
in speci�c challenging and restrictive scenarios. Besides
the low-cost gesture detection approach, which depends
on re�exive gesture-based controls to attain impeccable
command over mUAVs, our approach of employing a fog-
based stabilization mechanism, in addition to the mUAV’s
onboard stabilization system, allows the mUAV to operate
even when it is structurally unbalanced or unequally
loaded. This network-based stabilization mechanism pre-
vents the mUAV from �ipping-over and crashing by
restricting the user-generated commands to stay within
limits of the normal sensor operating range to avoid
overloading of the mUAV’s sensors.

In the future, we plan on increasing the functionalities
of the mUAVs by increasing the number of commanding
gestures and employing this approach for the control of
multiple mUAVs or swarms. Additionally, the deployment
of more advanced hardware-based on-board mUAV sta-
bilizing mechanisms is being worked upon.
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