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Abstract

The gain in popularity of unmanned aerial vehicles (UAV), platforms and systems (UAS) can be
attributed to its ease of operation, versatility and risk-free piloting. The primary UAV applica-
tion domain has expanded, from recreational and military flights, to include scientific surveys and
agriculture. The popularity of UAVs in scientific data gathering and applications, especially the
use of small, multi-rotor UAVs is quite widespread. These multi-rotor UAVs are small, portable,
low-cost, highly manoeuvrable, and easy to handle. These features make such UAVs attractive to
scientists and researchers worldwide. There has been a sudden spurt of UAV use in niche domains,
such as agriculture. Agriculturalists are choosing UAV-based field operations and remote sensing
over the time-tested satellite-based ones, especially for local-scale and high spatiotemporal resolution
imagery. In this survey, we explore various UAV application areas, types, sensors, research domains,
deployment architectures. Comparisons between various UAV types, sensing technologies (UAV,
WSN, satellites), UAV architectures and their utility in precision agriculture has been provided.
Additionally, crop stress, its types, and detection using various remotely-sensed vegetation indices
have been explored for their use in UAV-based remote sensing.

Keywords: Unmanned Aerial Vehicles, UAV sensors, UAV classification, UAV architectures,
precision agriculture, crop-stress, vegetation index

1. Introduction1

The advent of aerial machinery and devices has proved to be beneficial for the overall development2

of the human race – both technologically and strategically (Valavanis & Vachtsevanos (2014)). In3

the present times, countries with advanced aerial systems have a clear upper-hand in technological,4

scientific, as well as military matters, as compared to countries lacking this technology (UAV (-)).5

In the present times, the major use of these aerial pieces of machinery is for commercial and military6

applications. However, scientific and technological advancements (Fletcher et al. (2016), Maja et al.7

(2016)) have allowed for the use of these aerial systems in much smaller and customized applications8

such as surveys (Sonaa et al. (2016)), tracking (Razinkova & Cho (2016)), public safety networks9

(Sikeridis et al. (2018)), and others (Valavanis & Vachtsevanos (2014)). Furthermore, some of these10
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aerial systems are being used, sans onboard pilots. A remote pilot on the ground can operate these11

systems just as well as an onboard pilot. These pilot free systems are now popularly being called12

unmanned aerial systems (UAS), or unmanned aerial vehicles (UAV). Besides remote pilots on the13

ground, controlling these unmanned systems, technological advancements in sensors have allowed14

for the use of autonomous algorithms and techniques, which does away with the need for human15

pilots altogether (Mart́ın et al. (2016), Saleem et al. (2015)). The use of unmanned aerial systems16

in scientific studies has gained momentum due to the following reasons:17

• Speed of deployment (Zhou et al. (2016))18

• Consistency of sensing (Lootens et al. (2016))19

• Obstacle free navigation (Cetin & Yilmaz (2016))20

• Ability to aquire and condense information over much larger areas (Meyer et al. (2015))21

The rapid gain in popularity of unmanned aerial platforms can also be attributed to its low acqui-22

sition cost, low maintenance, low set-up time and live-data transmission ability. These features of23

the UAVs make them the preferred choice for regular users for all kinds of situations, be it farm-24

ing, surveying, planning or military applications. Additionally, these UAVs can be used safely in25

high-risk zones without any threat to its human operator(s). As UAVs do not generally need long26

runways to get airborne or land, they can be deployed in, virtually, any situation or terrain. UAVs27

with vertical take-off and landing (VTOL) Austin (2011) capabilities for low-range applications are28

popular as they generally, do not require flight permissions, are not affected by bad weather, are29

easy to maneuver and provide fast, reliable and repetitive data-capture with live data-transmission30

capabilities.31

Besides common usage for disaster management and mitigation operations (Tuna et al. (2014)),32

the use of these aerial platforms is dominating all spheres of scientific data gathering and monitor-33

ing tasks. Domains such as remote sensing, mapping, architecture, and agriculture are increasingly34

making use of aerial platforms, specifically unmanned (UAV) ones, due to their ease of relocation,35

low-cost and easy maintenance (Austin (2011)). These platforms can be easily integrated with an36

array of radios and sensors to suit specific needs and that too in a short span of time. This gain in37

popularity of UAVs can be attributed to the miniaturization of electronics and easy availability of38

portable and low-power sensor solutions, which makes it suitable for use in domains like communi-39

cation relaying (Sharma et al. (2017)), remote-sensing and agriculture (Fletcher et al. (2016)).40

1.1. Motivation41

The established trend of using satellite-based remote-sensing and imagery for detection of various42

earth-based parameters in riverine, forest, desert, agricultural, glacial and volcanic ecosystems is43

effective to a certain range of resolution. The temporal sensitivity of this method is very low due to44

the large return-time of the satellite above the same zone. Additional factors such as the presence45

of volcanic ash and plumes during eruptions, smoke, bad-weather, and others hinder the proper46

visualization of the ground conditions. Moreover, satellite-based systems are highly periodic, with a47

long waiting time for a repeat fly-by over the monitored zone, resulting in hindered operations, which48

need real-time monitoring. Specialty applications such as disaster monitoring and management,49

precision agriculture and tracking cannot be fully integrated with the satellite-based systems. In50

agriculture, there is a need for quick and immediate monitoring and sensing systems, which can51

remotely monitor and sense large swathes of land on a daily basis. The satellite-based remote-52

sensing applications are being actively challenged by UAV-based remote-sensing. As there is no53

comprehensive survey on the use of UAV-based remote sensing in precision agriculture, we try to54
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summarize the UAV types and their capabilities for real-time monitoring problems in precision55

agriculture.56

1.2. Contributions57

In this manuscript, we highlight the important features and requirements for unmanned aerial58

sensing in precision agriculture. The various contributions of this survey can be summarized as59

follows.60

1. A comparison between various UAV types concerning agricultural applications is tabulated.61

2. An overview of UAVs is provided with insights into various UAV types and the sensors used.62

The sensors are further categorized for their degree of usefulness to the UAV’s flight operations.63

3. The broad research domains of UAVs which are being extensively worked upon, and the use64

of UAVs in agriculture is discussed.65

4. A comparison between the feasibility of agricultural usage among UAV-based remote sensing,66

WSN-based sensing, and satellite-based remote sensing is provided.67

5. A brief overview of plant stress is given which is followed by a tabulation of various spectral68

indices for remotely detecting these plant stresses.69

6. Various UAV deployment techniques for precision agriculture and their corresponding archi-70

tectures is summarized. A comparison between these architectures is also provided.71

2. A Sketch of Unmanned Aerial Vehicles72

The importance of UAVs in various domains is highlighted by dividing this section into three73

broad categories – Types, Sensors and Research Domains. Section 2.1 on UAV types categorize74

UAVs based on their structure and functionality. Section 2.2 on UAV Sensors highlights the various75

sensors needed for the operation of UAVs and for the use of these UAVs in agriculture. Depending76

on the criticality of usage, the UAV sensors are further divided into – primary sensors and secondary77

sensors. Section 2.3 outlines the various challenges and their solutions in applications of UAVs for78

various tasks.79

2.1. UAV Types80

Fig. 1 shows the broad division of unmanned aerial platforms being used in the present times for81

a plethora of applications, in various domains and fields such as recreation, scientific surveys, and82

military applications. Table 1 compares the various UAV types and their usefulness in agricultural83

applications.84

UAVs can be broadly classified into three parts, based on their structure – winged, wing-less and85

ones based on bio-mimicry. Fixed wing UAVs can be further classified as ones requiring a runway86

or clearing for take-off and landing, or ones which can be launched as projectiles by humans or87

mechanical contraptions designed for the same. The wingless UAVs can be classified as shown in88

Fig. 1. The balloon types are the ones dependent on gas-filled balloons for lift-off and altitude control89

(e.g., Blimps). Bi-rotor UAVs have two rotors, one controlling the thrust and lift-off, and the other90

controlling the direction of the vehicle. Multi-rotor UAVs are named based on the number of motors91

present. Generally, this class of UAVs is the more widely used due to their low cost, versatility, and92

maneuverability. Parachute-based UAVs are either dropped from a high altitude (generally from93

an airplane), or they require a motorized ground vehicle tethered to the parachute. The horizontal94

motion of the vehicle causes the parachute to lift-off, which, in turn, lifts-off the vehicle from the95

ground. Additional fans fitted on the vehicle helps in direction and altitude control. Bio-mimicry96

based UAVs are typically equipped with a bio-inspired air-frame, functionality, or capabilities. UAVs97
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Figure 1: Categorization of UAVs, based on their structure and functionality.

Table 1: Comparison between UAV types, based on their regular application in agriculture.

Type Payload Cost Ease of
Control

Manoeuvrability Agricultural
Significance

Fixed Wing High High Low Medium Medium

Bio-mimiked Low High Medium Low Low

Balloon Low Low Low Low Low

Parachute Low Low Low Low Low

Helicopter Medium Medium Medium Low High

Quadcopter Medium Medium High High High

Hexacopter Medium Medium High High High

Octacopter Medium Medium High High High
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with flapping wings for better maneuverability and a bird-like structure for lower wind resistance and98

stability are among some of the bio-inspired UAVs. This class of UAVs is still under development99

and are yet to gain popular market acceptance. Some manufacturers and models of these UAV types100

are given in Table 2.101

Table 2: Selected manufacturers and models of various classes of UAV.

Type Manufacturer Model

Fixed Wing

558 ARP GRIF-1

AAI Corp. Aerosonde MK4.7

AAI Corp. RQ-2 Pioneer

Adcom Systems YABHON United 40

Aerial Monioring Solu-
tions

Eagle-Owl

DRDO Nishant, Kapothaka, Lakshya

Bio-mimiked
DARPA Goshawk

Blue Bear iMorph

Helicopter
Aerodreams Chi-7

CybAero APID-60

Quadrotor

3D Robotics IRIS+, 3DR Solo

Parrot Bebop

Aerialtronics Altura Zenith ATX-4

DJI Phantom

Aeryonlabs SkyRanger

Hexarotor Aibotix Aibot-XU, Aibot-X6

Octarotor Draganfly Draganflyer-X8

2.2. UAV Sensors102

The main functions and unmanned capabilities of the UAVs are accredited to various sensors103

responsible for the perception of UAV’s location to the Earth’s frame of reference, and sensors104

responsible for keeping the UAVs airborne. The various sensors generally integrated with UAVs can105

be divided into two broad groups based on the criticality and role of the sensor in the functioning106

of these aerial platforms (Fig. 2). These sensor groups are divided as:107

1. Primary – Necessary for operating and controlling the UAV.108

2. Secondary – Externally mounted on the UAV, which may or may not be directly associated109

with its functioning.110
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Figure 2: A broad outline of UAV sensor types, based on its functional importance to a UAV.

2.2.1. Primary Sensors111

The primary sensors of a UAV include the inertial, navigational and the positioning sensors.112

These sensors are directly integrated to the UAV and affect the functioning and flight of the UAV.113

These sensors – voltage sensors, accelerometers, gyroscopes, magnetometers, Global Positioning114

System (GPS), rotary encoders, temperature sensors, proximity sensors, barometer, and radios –115

prove critical to the flight of a UAV. Fig. 3 shows some of the primary sensors used in UAVs.116

Figure 3: Categorization of a UAV’s primary sensors, based on its functionality.

A typical UAV’s primary sensors can be broadly categorized into five groups as shown in Fig. 3.117

1. Position: The onboard position sensors in a UAV primarily deals with the task of localization,118

concerning a remote control station and the Earth’s frame of reference. Sensors such as GPS,119

Gyroscopes, and Magnetometers fall into this category.120
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2. Motion: The motion sensors on a UAV are tasked with measuring the velocity and acceleration121

of the UAV as a whole, as well as, keeping a check on the individual motor rotations. Sensors,122

such as accelerometers deal with the motion of the UAV as a whole, while rotary encoders deal123

with individual motor’s rotations.124

3. Environment : Environmental parameter monitoring using sensors such as barometers and125

temperature sensors, ensure the proper working of UAVs at all times. In cases of over-heating126

or during extremely windy situations, these sensors alert the controller without fail.127

4. Radio: This category of sensors is responsible for maintaining two-way communication between128

a UAV and its controller. The controller may be a human controller or automated algorithms129

on a remote processing machine. Nonetheless, various UAV parameters (yaw, pitch, roll,130

thrust) and onboard status of the sensors are continuously communicated to the controller.131

Commands from the controller are communicated back to the UAV using this category of132

sensors.133

5. Power : This category of sensors is responsible for monitoring and maintaining the proper134

power levels of a UAV, and generating alerts upon detection of power anomalies. The sensors135

in this category include current and voltage sensors.136

Some of the individual sensors such as the voltage sensors primarily keep track of the UAV’s onboard137

power requirements and power consumption. Commonly, in the commercially available UAVs, the138

voltage sensors decide the flight status of the UAV. In case a UAV’s power requirements are not suf-139

ficient to complete a pre-assigned mission, the UAV may auto-land to avoid a crash. Accelerometers,140

gyroscopes, and magnetometers are termed as the IMU sensor. IMU stands for inertial measurement141

unit and calculates the orientation, bearing, and velocity of the UAV to the Earth’s inertial frame of142

reference. The IMUs are also responsible for stability and control of the UAV in the air. Barometric143

sensors provide altitude and air-speed information to the UAV. GPS is responsible for positioning144

and localization of the UAV to the constellation of the GPS satellites rotating around the Earth.145

GPS is mainly used for automatic path planning and waypoint-based navigation in the UAV. Prox-146

imity sensors are of two types – infra-red and ultrasonic. The ultrasonic proximity sensors are highly147

directional, whereas the infra-red ones are omnidirectional. These proximity sensors are used for148

avoiding obstacles and ground detection when the UAV is air-borne. Rotary encoders are mainly149

used for keeping track of the rotations a motor is undergoing. These encoders are used for very150

high precision applications, where exact accuracy is required for controlling the UAV. The radios151

themselves are sometimes used as passive sensors for estimating the distance of the UAV from the152

controller or the surrounding environment. The sensed signal strength from the radios is also used153

for decision making – a UAV may be programmed to return to its starting point in the event of a154

feeble radio signal from the remote handler or complete loss of signal.155

2.2.2. Secondary Sensors156

The secondary sensors are not linked directly to the functioning and controlling of the UAV and157

can be changed, based on the UAV’s application. These sensors include – gas sensors, temperature158

sensors, radiation sensor, humidity sensor, color sensor, RGB camera, hyper-spectral camera, multi-159

spectral camera, spectrometer, Light Detection and Ranging (LiDAR) sensor, flux sensor, thermal160

imaging camera, Sound Navigation, and Ranging (SoNAR) sensor and gimbals-based stabilization161

sensors. Fig. 4 shows some of the secondary sensors used in UAVs.162

Scalar sensors such as gas, temperature, humidity, flux, and radiation, when attached to UAVs,163

quantify the environmental parameters in the vicinity of the UAV. The UAV needs to be manipulated164

in order physically re-position it so that it can gather readings from various 3D spatial coordinates165

in its mission path. Non-scalar sensors such as cameras, LIDARS and SONARS can be positioned166
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or rotated towards any spatial co-ordinate in the 3D-space, it has to observe, without physically167

changing or re-positioning the UAV. These can quantify the various environmental variables near as168

well as far from the UAV. A UAV’s secondary sensors can be broadly categorized into five groups169

as shown in Fig. 4.170

1. Visual : The visual sensors comprise of sensors or devices which capture data in the form of171

light within the visible spectrum of light. These sensors include cameras, color sensors, and172

LiDARs.173

2. Spectral : The spectral sensors capture data beyond the visible spectrum of light. It includes174

hyper-spectral imaging, multi-spectral imaging, and thermal imaging. Most of the information175

contained in these spectra are not visible to the human eye and need to be processed and176

converted to a form which is recognizable by humans.177

3. Stabilization: The sensors for stabilization are mainly responsible for the balance and counter-178

balance of sensors and external loads carried by a UAV. For example, a gimbal-based stabiliza-179

tion unit is used with visual imaging devices in UAVs. This unit counter-balances the tilt and180

turns of a UAV, allowing for a seamless, jitter-free and smooth video recording during flight.181

4. Environment : Sensing the environment around a UAV increases its functionality by allowing182

for a much more full range of parameters and factors to be sensed. These environmental sensors183

include sound sensors, temperature sensors, barometers, flux detectors, and radiation sensors,184

among others.185

5. Proximity : The primary task of proximity sensors, if armed on a UAV, is to detect obstacles186

around the UAV and continually measure its distance from the ground. This helps in its safe187

and hinderance-free navigation.188

Figure 4: Categorization of a UAV’s secondary sensors, based on its functionality.

2.3. UAV Research Domains189

The various UAV research domains are categorized into eight broad groups – Imaging, Networks,190

Swarms, Localization, Path Planning, Mapping, Stabilization and Controls and Applications.191
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Path-planning is one of the primary requirements for non-Line-of-Sight (NLOS) operation of192

UAVs. de la Cruz et al. (2008) demonstrates an evolutionary algorithm based path planning ap-193

proach. Their method selects the optimal path of several simultaneous UAVs based on external194

threat perception and extrinsic factors Mahjri et al. (2018). Yang et al. (2014) describe the state-195

of-the-art and various approaches for 3D UAV path planning. They divide the 3D path planning196

algorithms into five approaches – sampling-based, node-based, mathematical model-based, bio-inspired197

and multi-fusion-based. Samad et al. (2013) discuss the potential of UAVs in civilian use and map-198

ping applications. They base their study on the current needs of the industry. Chao et al. (2013)199

survey the use of optical-flow techniques for UAV navigation and collision avoidance in urban areas200

and indoor environments. Additionally, the traditional path planning approaches include GPS-based201

waypoint selection, vision-based navigation, and fixed waypoint based navigation.202

The use of multiple-UAVs for achieving a common goal in the fraction of the time it would203

have taken a single UAV is termed as UAV-swarm. Danoy et al. (2015) implement a heterogeneous204

network of UAVs consisting of – an upper layer (high altitude, fixed-wing UAV), controlling multiple205

lower layer (low altitude UAVs) – to form a swarm with improved network stability in wide range206

operations. Howden & Hendtlass (2008) discuss a collective intelligence algorithm focusing more on207

localized control rather than on centralized control. Vincent & Rubin (2004) analyze the performance208

of cooperative strategies for UAV-based search in hazardous environments. An analysis is also209

provided on the trade-off between UAVs in use and search time. Pan et al. (2009) describes a particle210

swarm optimization (PSO) inspired, multi-objective-based non-stationary UAV assignment strategy.211

White et al. (2008) discuss the use of UAV swarms in contaminant cloud-boundary detection and212

modeling.213

The knowledge of the UAV location and orientation in remotely operated and unmanned missions214

is important, especially in NLOS scenarios, which makes Localization another important and yet,215

challenging domain in UAV research. Zhang et al. (2010) give an approach for estimating the position216

and orientation of a UAV during vision-based guidance and navigation. Zhou (2010) describes a geo-217

referencing approach for UAV-acquired video data. Roberts & Tayebi (2011) gives position tracking218

of VTOL UAVs adaptively. Another method of UAV localization, which exploits data-muling from219

acoustic sensor networks is proposed by Klein et al. (2013). They present an architecture for an220

on-the-fly inference for UAVs while the UAVs collect data from sparse sensor networks. Bayesian221

inferences are drawn by the UAV-system from the gathered data to generate its consecutive actions.222

Nemra & Aouf (2010) give an Inertial navigation sensor (INS)-GPS sensor fusion scheme for UAV223

localization using state-dependent Riccati equations.224

Post-path-selection, formation control and localization of UAVs, aerial imaging is one of the225

most application-oriented domains. Johnson et al. (2003) demonstrate the use of a small UAV226

for collecting hyper-spectral images of vineyards. The images are transmitted to a remote station227

in near real-time and are used for determining crop vigor from canopy reflectance measurements.228

Similarly, Herwitz et al. (2004) demonstrate the prolonged use of UAVs by remotely monitoring229

coffee plantations in Hawaii, from the mainland United States. The UAV is controlled wirelessly,230

and the images from this UAVs are received via a WLAN infrastructure in real-time. Grenzdörffer231

et al. (2008) discuss the use of UAV’s photogrammetric potential in forestry and agriculture from232

an image and GIS-based data-acquisition point-of-view. Zhang & Kovacs (2012) discuss the use of233

small UAVs in precision agriculture. Mauriello & Froehlich (2014) demonstrate the use of UAV-234

based imaging in automated thermal profiling of buildings to map leakages, improper insulation,235

and heat loss. Tahar (2015) demonstrate the use of UAVs in slope mapping and then generating a236

digital ortho-photo and the associated digital elevation model of their study area.237

The network and communication aspects of UAV have been addressed in various literature, such238

as those by Schleich et al. (2013), Jawhar et al. (2017), and Chen et al. (2014). Schleich et al. (2013)239

9

For 
pe

rso
na

l u
se

 on
ly



propose algorithms for UAV mobility control, which follow a decentralized and localized approach.240

The algorithms have been designed for real-time constrained networks in surveillance tasks. Chen241

et al. (2014) give a comprehensive survey on the area-coverage problem in cooperative UAV networks.242

Additionally, Gupta et al. (2015) provide a survey of various architectures for UAV networks. They243

also discuss the option of SDN as a means of flexible, low-cost deployment method in UAV packet244

routing.245

One of the primary work areas of UAVs is their control. Works, such as those by Chen et al.246

(2009), Lee et al. (2016), and Feng et al. (2016) explore the various options in autonomous control247

of UAVs. Azinheira & Moutinho (2008) discuss the back-stepping design and its asymptomatic248

stability for the hover control of a UAV. Bateman et al. (2011) describe a method for fault diagnosis249

and fault-proof control strategy for UAVs. The use of neural networks in output feedback control of250

UAVs is demonstrated by Dierks & Jagannathan (2010).251

Applications and customization of UAVs for various applications is a domain requiring high252

levels of skills, accuracy, and precision. Ruangwiset & Higashino (2012) describe the use of video253

cameras mounted on UAVs in water resource survey. Chahl & Mizutani (2012) propose the use of254

bio-mimetics for UAV compass design. Their proposed approach uses the spectral and polarized255

distribution of light in the environment to generate accuracies that are comparable to those gen-256

erated by solid-state sensors. Cho et al. (2011) propose wind and air-speed estimation technique257

using a single GPS antenna and a Pitot tube. Lin et al. (2011b) study the possibility of using258

mini-LiDAR systems and luminosity (Lux) sensors on UAVs for fine-scale mapping of tree heights,259

pole detection, road extraction, and digital terrain model refinement. Bryson & Sukkarieh (2008)260

proposed an approach for path-planning using a SLAM unit attached to a UAV. Lin et al. (2011a)261

propose combining satellite-based remote sensing with UAV-based aerial imaging for a non-invasive262

survey of archaeological sites. An approach for 3D motion error analysis for motion compensation in263

UAV synthetic aperture radar (SAR) is described by Xing et al. (2009). Their method is primarily264

developed for low and medium altitude UAV-SAR systems. Another exciting and challenging appli-265

cation of UAVs with high stakes is disaster management. Ferworn et al. (2013) use a game-engine266

simulation-based approach for disaster scene reconstruction of urban building collapse and rubble.267

This simulation is used for formulating UAV-based urban search and rescue operations. A brief268

categorization of various research areas in UAVs is shown in Fig. 5.269
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Figure 5: Categorization of UAV research domains.

2.4. UAV Application Areas270

The present-day applications of UAVs are wide and span various domains. This prominence271

of UAVs as a technology enabler in various domains is mainly attributed to its ability to cover272

large areas in very short periods of time Zorbas et al. (2016). The use of UAV in architectural273

studies is demonstrated by Grün et al. (2001) and Fernández-Lozano & Gutiérrez-Alonso (2016).274

The present applications and future use of UAVs in Glaciology is described by Bhardwaj et al.275

(2016). Chianucci et al. (2016) explore the use of fixed-wing UAVs in forest canopy-cover estimation276

using UAV-acquired RGB images. Yahyanejad & Rinner (2015) discuss the system of multiple low-277

scale UAVs for visual and thermal image registration from low-altitude images. A case study of the278

Wairakei Tauhara geothermal fields in New Zealand using UAV-based thermal IR imaging techniques279

is discussed by Nishar et al. (2016). Shaad et al. (2016) explore high-resolution and cost-effective280

terrain mapping of river corridors using UAVs. Similarly, use of UAVs for hyperspectral remote281

sensing in coastal wetlands is explored by Ma et al. (2016). UAVs are also being used for checking282

plant infestations, as demonstrated by Douglass et al. (2016) for detecting Tamarix sp. infestations.283

The use of UAVs in crop water-stress detection has been demonstrated and discussed by Zarco-284

Tejada et al. (2012), Gago et al. (2015), Irmak et al. (2000) and many others. The use of UAVs285

in other agricultural domains such as precision agriculture (Das et al. (2015)), thermal imaging of286

crops (Bellvert et al. (2016)), crop biomass estimation (Jannoura et al. (2015)) and others are being287

extensively explored.288

3. Possibilities for UAVs in Agriculture289

It is due to the vast application domains and advantages of unmanned aerial systems that they are290

actively considered for use in various domains which have big dependencies on traditional methods291

and techniques passed on from generation to generation. One such domain is agriculture which,292

until now in major parts of the world, still relies on traditional techniques and methods. The need293

for constant scientific intervention in age-old agricultural practices to meet the ever-increasing load294

of the population has given rise to optimization of existing techniques and resources in agriculture.295
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Table 3: Comparison between UAVs and traditional sensing technologies in agriculture.

Parameters
Sensing Technologies in Agriculture

UAV WSN Satellite

Implementation Cost Low Low High

Spatial Resolution Customizable High Low

Temporal Resolution Customizable High Low

Ease of Relocation High Low Low

Grid Size Customizable Point Medium

Ease of Control Medium High Low

Resistance to Environmental Ef-
fects

High Low High

Resilience to Failure High High Low

Data Cost Low Low high

Computation Cost Medium Low High

Network Cost Low Low High

Need for Control Infrastructure Maybe No Yes

Multiple Devices/units Required Maybe Yes No

Master-Slave Architecture Maybe Maybe No
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Keeping track of vegetation using remotely sensed satellite data, precision irrigation, and fertiliza-296

tion, using ground-based sensor and actuator networks, and local weather-stations for micro-climate297

prediction are among the few technologies being aggressively applied in agriculture. Studies have298

been being done to detect various plant-stress conditions for plant phenotyping remotely. Studies,299

such as those by Buitrago et al. (2016) describe the changes in thermal infra-red (IR) spectrum of300

plants due to the effect of heat and, water-stress. Similarly, Dutta et al. (2016) report the accumu-301

lative moisture-stress of potatoes by analyzing their spectral response. A technique of underground302

plant biomass accumulation by studying the leaf-area from digital images is described by Joalland303

et al. (2016), whereas a method for water-stress detection in lemon trees by studying their chlorophyll304

fluorescence is demonstrated by McFarlane et al. (1980).305

In addition to remote sensing and spectroscopic characterization, various technologies are being306

used in direct or allied domains of agriculture. Arnó et al. (2013) and Tao et al. (2015) explore the307

agricultural application of Light Detection and Ranging (LIDAR). Arnó et al. (2013) describe their308

approach of using a ground-based LIDAR for leaf-area estimation in vineyards. Tao et al. (2015)309

propose a method of using LIDAR data to segment tree crowns and detect tree trunks. Similar310

approaches include autonomously guided four-wheel-drive rovers for precision field operations, as311

described by Cariou et al. (2009). Additional domains such as automation in agriculture are also312

being explored. Buitrago et al. (2016) demonstrate a family of re-configurable vehicles that perform313

tasks such as pruning, thinning, harvesting, mowing and spraying, which allows them to increase314

agricultural work efficiency by 58%. Singh et al. (2010) discuss automation for specialty crops and315

discuss the lessons learned from it. They developed sensor systems to monitor insects, crop-load316

scouting and caliber measurement, which resulted in increased yield and reduced labor costs.317

In much recent times, even satellite-based remotely sensed data is inadequate for precision ap-318

plications, which need almost instantaneous field parameter readings. The infrequent data update319

intervals for a particular land area, the low resolution of sensed data and other factors have led to320

the increased use of UAVs in agriculture. In this paper, we use the term unmanned aerial vehicles,321

unmanned aerial systems and unmanned aerial platforms interchangeably, as they point to the same322

objective – human-less, airborne sensing and actuation platforms. Although there are works which323

address the issues of satellite-based remotely sensed data and their optimization (Li et al. (2015),324

Anghel et al. (2016) and Zhang et al. (2016)), the UAV-based remote sensing of plots and fields325

are expected to be more accurate (O’Brien (2016)), provide higher imagery resolutions (Hunt et al.326

(2016), O’Brien (2016)), and are more stable (Wójtowicz et al. (2016)). Moreover, the data from327

these aerial platforms can be regularly generated and even, generated on-demand, to create a local328

knowledge-base, which is not possible using satellite data.329

4. Architecting UAVs for Precision Agriculture330

Modern-day agricultural practices are becoming increasingly dependent on advanced scientific331

methods and techniques. The rise in popularity of precision agriculture – the use of minimum332

resources to maximize crop output – demands highly accurate, timely and frequent information333

updates about the soil, plant, and weather conditions for maintaining an optimum environmental,334

nutritional and stress balance for plants and crops. One of the commonly used ways of providing335

these information updates is through the use of wireless sensor networks (WSN). However, this336

approach is quite costly, as a huge number of sensors and sensor nodes are required for monitoring337

large tracts of land for precision agriculture. A new and upcoming approach of measuring the338

field parameters is using remote sensing using UAVs, which provide on-demand, highly accurate,339

and high-resolution spatiotemporal measurements, which are necessary for precision agriculture.340

Much research is being pursued in this domain, and continuous innovations in UAV technology for341
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agricultural purposes highlight the use of UAVs in agriculture. Mcfadyen et al. (2014) assess the342

deployment of UAVs in plant biosecurity. Rokhmana (2015) describe their practical experiences in343

using an unmanned aerial system for remote sensing in precision agriculture mapping tasks such344

as land preparation information, cadaster boundary detection, vegetation monitoring, plant health345

monitoring, and stock evaluation. Zhao et al. (2015) performed a detailed field study of correlations346

between UAV-acquired Normalized Difference Vegetation Index (NDVI) measures and ground-truth347

values of crop stress. Rasmussen et al. (2016) discuss and evaluate the possibility of using UAV348

mounted consumer-grade cameras for deriving vegetation indices and accessing land parameters.349

Various uses of UAVs in plant water stress detection have been described by Zarco-Tejada et al.350

(2012), Gago et al. (2015), and Irmak et al. (2000), whereas works by Jannoura et al. (2015) and351

Irmak et al. (2000) demonstrate the use of UAVs for biomass estimation. Zarco-Tejada et al. (2012)352

use a micro hyper-spectral camera, along with a thermal camera mounted on a UAV platform, for353

detecting the fluorescence, temperature and narrow-band indices of vegetation. These parameters354

are then used for estimating crop water-stress in citrus orchards. The results of the study show high355

sensitivity of the indices – Renormalized Difference Vegetation Index (RDVI), Modified Triangular356

Vegetation Index (MTVI1) and Triangular Vegetation Index (TVI) – to stomatal conductance and357

water potential. Gago et al. (2015) report a positive correlation of water-stress indicators to the358

following reflectance indices – NDVI, Optimized Soil Adjusted Vegetation Index (OSAVI) and Nor-359

malized Photochemical Reflectance Index (PRI norm). The performance of these indices is reported360

to be dependent on the crop-type being investigated. They also evaluate the performance of different361

remote sensing UAVs with ground-truth plant-stress data. Irmak et al. (2000) conduct experiments362

for quantifying and monitoring water-stress of summer corn in Mediterranean, semi-arid regions.363

The results of the study converge into an actionable generation of irrigation-scheduling plans and364

even provides yield estimation from the crops. Jannoura et al. (2015) use true-color aerial images365

acquired using a remotely operated UAV to monitor crop biomass. The true color images and the366

derived Normalized Green–Red Difference Index (NGRDI) have been reported to be useful indicators367

for biomass estimation and estimation of yield in site-specific agricultural decision making.368

Senthilnath et al. (2016) demonstrates a spectro-spatial classification method for the detection of369

tomatoes. They exploit UAV-acquired RGB images for the detection of tomatoes. Techniques such370

as k-means clustering, expectation maximization, and SOM are used for spectral clustering. Berni371

et al. (2009) use UAV-based thermal and narrow-band multi-spectral imaging for remote sensing372

and vegetation monitoring. Bio-physical parameters such as – NDVI, soil-adjusted vegetation index373

(SAVI), PRI – are estimated for the detection of water stress and canopy temperature sensing.374

Vega et al. (2015) applied UAV-based multi-temporal imaging for sunflower crop monitoring during375

its growing season. The effect of time of day on NDVI generation is also analyzed. Hunt et al.376

(2010) test the acquisition of near infra-red (NIR) green-blue crop monitoring digital photographs377

from UAV. They apply their approach on variably fertilized fields of winter wheat. They report378

a good correlation between leaf area index and NDVI in their experiments. Costa et al. (2013)379

review the use of thermography in exploring plant-environment interactions. Gonzalez-Dugo et al.380

(2013) discusses the heterogeneity in water-stress of five different fruit tree species using UAV-based381

thermal imagery. They use this approach for precision agriculture management.382

Similarly, an agricultural water-conservation approach by seasonal evaluation of crop water status383

in peach and nectarine orchards is described by Bellvert et al. (2016). UAV-based thermal imagery384

is used to estimate crop water stress index (CWSI). Additionally, the authors relate the CWSI to385

leaf-water potential.386
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Table 4: Some of the popular commercially available UAV solutions for precision agriculture.

S.
No.

Product Single
Flight
Range

Flight
Con-
trol

Type Sensors Applications Specifications

1 senseFly
eBee SQ

500 acres Semi Fixed
wing

Sequoia multi-spectral sensor Vegetation indices, Plant
count, Soil water levels, Soil
temperature, Topography
mapping

1.1 Kg, 55mins
flight, USD 12000+

2 Precision
Hawk
Lancaster
5

300 acres Semi Fixed
wing

Multispectral sensor, humid-
ity, temperature, air pressure
along with incident light,

Plant height, Plant count,
Enhanced NDVI, Field Uni-
formity, Volume measure-
ment, Optimized Soil Ad-
justed Vegetation Index (OS-
AVI), Water pooling

3.4 Kgs, 45 mins
flight, USD 25000+

3 Honey
Comb
AgDrone

600 acres Semi Fixed
wing

NDVI, visual stereoscopic
and NIR (thermal imaging)

NDVI, High-definition visible
maps, Topography mapping

55 mins flight, USD
10000+

4 Sentera
Phoenix 2

700 acres Semi Fixed
wing

RGB visual, NIR, NDVI and
Live NDVI (streaming)

NDVI, High-definition visible
maps, Topography mapping

1.8 Kgs, 59 mins
flight, USD 18000

5 Precision
Hawk

Max. 50
acres

Semi Multi
rotor

RGBvisual, NIR, NDVI, Li-
DAR

Plant count, Plant height,
Yield prediction, Plant
health, Plant canopy map-
ping, Biomass estimation,

Varies with the
multirotor options
available. Approx.
USD 1800.

6 DJI M100 Max. 50
acres

Semi Multi
rotor

Visual sensor, Multispectral
sensor

Plant counting, 3D drainage
mapping, Plant health mon-
itoring, NDVI, Enhanced
NDVI

35 mins flight, USD
8300

7 AGCO
Solo

Max. 30
acres

Semi Multi
rotor

Visual sensor, NIR sensor High-resolution orthomo-
saics, NDVI maps, Field
Health and Management
Zone maps.

20 mins flight, USD
7850

8 Sentera
Omni Ag

Max. 30
acres

Semi Multi
rotor

Double 4K multispectral sen-
sor, RGB visual, NIR, NDVI
and NDVI Live (streaming)

Plant health, Plant stress 25 mins flight, USD
13000

9 Lockheed
Martin
InDago
AG

Max 75
acres

Semi Multi
rotor

Configurable with various
imaging sensors

Depends on the sensors used. 45 mins flight, USD
30000

10 ATI AgBot Max. 30
acres

Semi Multi
rotor

IR, Multispectral and HD
video sensors

Plant health, Plant stress 4.7 Kgs, 26 mins
flight, USD 8000
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UAVs in precision agriculture is proving to be immensely popular with agriculturalists. Das et al.387

(2015) discuss a system design and methods for automated monitoring of crops in precision agricul-388

ture. Their particular multi-spectral 3D imaging system consists of a suite of sensors, specifically,389

thermal imagers, multi-spectral cameras, and navigational sensors, which extract plant morphology,390

canopy volume, leaf area index, and fruit counts. Besides the UAV-mounted system, they addition-391

ally deploy a manually carried harness to gather ground-based images. Zecha et al. (2013) review392

the available sensor platforms used for research in precision farming. Zhang & Kovacs (2012) re-393

view the application of small UAVs for precision agriculture. The comparison of these UAVs with394

satellite-based data-acquisition establishes the potentiality of low-altitude UAVs in environmental395

monitoring – low cost, high temporal resolution, and flexibility in data acquisition. Tokekar et al.396

(2013) propose a sensor planning approach for UAV-unmanned ground vehicle (UGV) coordination397

in precision agriculture. The ground and aerial measurements obtained by them are used for gen-398

erating Nitrogen deficiency map of the fields. Chance et al. (2016) use spectroscopic images from399

UAVs in detecting certain unwanted species of weed amongst useful vegetation. The abundance of400

UAV-based agricultural research and applications, which are regularly reported, highlight its im-401

portance in modern-day agriculture. Table 3 highlights the advantages of UAV-based sensing in402

agriculture, as compared to other sensing technologies.403

4.1. Image Processing and Correction404

The imagery acquired from UAV flights, be it visual RGB, NIR, or multispectral, needs to405

be corrected to eliminate noise and jitters and processed to obtain useful information for further406

analysis. Typical problems encountered during aerial image capture include:407

1. Jitters in images due to motion or vibration of the UAV.408

2. Overlapping images of the same area.409

3. Non-overlapping image patches of an area under survey410

4. Determining the correct orientation of the image (locating North in the image)411

5. Variations in images due to angle and altitude of flight.412

(a) Noisy aerial image with jitter. (b) Stabilized aerial image.

Figure 6: Aerial images of experimental agricultural plots captured using an assembled quadrotor UAV, with and
without image stabilization.

The vibration in the UAVs, especially multi rotors cause jitters in the captured images unless the413

imaging mechanism is sufficiently padded. Fig. 6(a) shows an image captured from a UAV, where414

the camera is directly attached to the UAV frame without any vibration-proofing or stabilization.415

This results in distorted images resulting in loss of information in the captured images. In contrast416

to this, Fig. 6(b) shows a gimbal stabilized camera attached to a UAV resulting in much clearer and417

precise capture of images.418
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The second problem of image overlap is handled by a mechanism known as image stitching.419

Primarily, image stitching looks for matching key points in images. Based on the key points, the420

images are stitched to generate a single continuous image with the inclusion of the overlapping421

region. Figs. 7(a) and 7(b) show two aerial images of a region of interest with significant overlaps.422

The detected key points in these images are shown in Fig. 7(c), resulting in a stitched image with423

the overlapping region included as shown in Fig. 7(d).424

(a) First aerial image. (b) Second aerial image.

(c) Keypoint matching in aerial images.

(d) Final stitched image.

Figure 7: The process of image stitching demonstrated using two aerial images captured using a quadrotor UAV.

Modern imagery software for GIS such as the Sentinel Toolbox, QGIS Semi-automatic Classifica-425

tion Plugin (SCP), SAGA GIS: System for Automated Geoscientific Analyses, GRASS: Geographic426

Resources Analysis Support System and others generally handle the issues enumerated previously,427

especially overlaps, direction and orientation of images, and radiometric corrections.428

4.2. Remote Indices429

The bulk detection and analysis of plants for crop-stress is an important aspect of UAV-based430

precision agriculture, and it may be considered as one of the crucial stages of precision agriculture.431

Instead of inspecting each plant individually, certain indices have been designed, which exploit the432

difference of reflectances of various spectral bands – vegetation indices – allowing for bulk detection of433

vegetation and changes therein. The vegetation indices are designed to highlight certain vegetation434
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Band Assignments for Spectral Imaging

Figure 8: Some of the spectral bands used in remote sensing of vegetation indices.

properties. They are derived from two or more surface reflectance wavelengths, signifying reflectance435

properties of the vegetation under observation (HarrisGS). Since the dawn of space-age, satellite-436

sensed reflectance from large swathes of land are being used for inferring these indices. Currently,437

with the advent of cheap, reliable, and light-weight UAV remote sensing platforms, it is possible438

to calculate these indices locally, more accurately, and much more speedily. We broadly categorize439

some of these indices into three groups – Broadband Greenness, Narrowband Greenness and Others.440

The various vegetation indices derived and inferred from remote sensing are listed in Tables 6, 7,441

and 5.442

The Broadband Greenness indices are primarily simple indicators of green vegetation quantity443

and quality. The constituent reflectance measurements are sensitive to foliage cover, chlorophyll444

concentration, canopy area, and architecture. They compare reflectance peaks of vegetation in NIR445

and red range of the spectrum (see Fig. 8). These indices indicate the presence of photosynthetically446

active components in the vegetation and are mainly applied in land-use studies, climatic impact447

assessment and vegetative productivity (HarrisGS). Some of these indices are listed in Table 6.448

The Narrowband Greenness indices are similar to Broadband indices, but are much more sensi-449

tive, as they use the red edge of the spectrum (see Fig. 8) for their measurements. The Broadband450

indices tend to saturate in dense foliage, which is overcome by the Narrowband indices. These are451

mainly designed for use with imaging spectrometers. These indices are immensely useful in precision452

agriculture for identifying, analyzing, and managing site-specific spatiotemporal variations of the soil453

(HarrisGS). Some Narrowband Greenness indices are listed in Table 7.454

The other indices include Nitrogen and Carbon-based indices. The Nitrogen concentration in455

foliage is sensed by reflectance measurements in the short-wave IR region (see Fig. 8). Carbon, which456

is present in the dry states of lignin and cellulose, is also measured in the short-wave IR region. The457

increase in carbon index of vegetation indicates that the vegetation is undergoing senescence/ aging458

(HarrisGS). Some of these indices are listed in Table 5.459

Table 5: Other Indices.

Acronym Index Highlight Reference

NDNI Normalized Difference
Nitrogen Index

Experimental in nature and shows
strong sensitivity to changing nitro-
gen content during green canopy

Fourty et al.
(1996), Serrano
et al. (2002)

NDLI Normalized Difference
Lignin Index

Experimental in nature and Lignin-
sensitive. Lignin is contained in veg-
etation canopies

Serrano et al.
(2002), Fourty
et al. (1996),
Melillo et al. (1982)
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CAI Cellulose Absorption
Index

Indicates exposed surfaces contain-
ing dried plant material

Daughtry (2001),
Daughtry et al.
(2004)

PSRI Plant Senescence Re-
flectance Index

Maximizes the sensitivity of the ra-
tio of bulk caretenoids to chrolophyll

Merzlyak et al.
(1999)

4.3. Agro Analytics460

Post acquisition and processing of images, the eventual applicability of UAVs in precision agri-461

culture is the generation of usable information from the gathered data in the form of agro analytics.462

As an example, we monitored the growth of maize in our experimental agricultural plots for a full463

cropping cycle using a UAV-mounted RGB camera, the various stages of which are shown in Fig. 9.464

The quadrotor UAV images for this exercise were not corrected for direction or orientation. However,465

they do adhere to the restrictions of GPS-based plot positions. Fig. 9(a) shows the prepared field466

for the sowing of seeds. Fig. 9(b) shows the field after sowing and an initial watering regimen. Figs.467

9(c), 9(d), and 9(e) show the progress of crop growth after 30, 42, and 72 days of field preparation.468

The main objective of this example is to highlight the usefulness of aerial image based information469

gathering for agro analytics. The quantum of information provided by RGB images (as shown in470

Fig. 9) can be vastly improved by using more advanced sensors such as multispectral and thermal471

imagers.472

(a) Day 0 (b) Day 10 (c) Day 30 (d) Day 42 (e) Day 72

Figure 9: Monitoring the progress of Maize in a controlled agricultural experimental facility using UAV-based RGB
imaging. The RGB camera is stabilized. However, no further processing such as direction correction or orientation
correction has been applied to these images.

Agro analytics, in the present day, encompass the following three major application domains –473

1) Plant stress, 2) Yield prediction and 3) Insurance payouts.474

4.3.1. Plant Stress475

Abiotic plant-stress is mainly due to water, temperature or nutrient deficiency, or a combination476

of few or, all of them. Additionally, another class of plant-stress is due to disease attacks on the477

plants, which somehow damage their chemical and biological cycles, causing Biotic-stress in plants.478

Cantore et al. (2016) discuss their study on the assessment of induced abiotic-stress in the form of479

water-stress and reduction of biotic-stress in the form of application of fungicide for physiological480

and yield response of tomatoes. Elazab et al. (2016) report their approach on detecting abiotic-stress481

– nitrogen fertilization and heat stress – on maize productivity. They use a multi-spectral camera482

for calculating the Normalized Difference Vegetation Index (NDVI) and Normalized Green Red483

Difference Index (NGRDI) in estimating the Aerial Biomass (AB) and Grain Yield (GY) from the484

plants. King & Shellie (2016) describe their method of applying neural networks on leaf-temperature485
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Table 6: Broadband Greenness Indices.

Acronym Index Highlight Reference

ARVI Atmospherically Resistant Vegetation Index Resistant to atmospheric factors Kaufman & Tanre (1992)
DVI Difference Vegetation Index Distinguishes between soil and vegetation Tucker (1979)
EVI Enhanced Vegetation Index Corrects soil background signals and reduces effects

of aerosol scattering
Huete et al. (2002)

GARI Green Atmospherically Resistant Index High chlorophyll sensitivity, low atmospheric sensitiv-
ity

Gitelson et al. (1996)

GEMI Global Environmental Monitoring Index Global environment monitoring from satellite im-
agery, affected by bare soil

Pinty & Verstraete (1992)

GDVI Green Difference Vegetation Index Predicting nitrogen requirements of corn Sripada et al. (2006)
GRVI Green Ratio Vegetation Index Sensitive to photosynthetic rates in forest canopies Sripada et al. (2006)

GNDVI Green Normalized Difference Vegetation Index More sensitive to chlorophyll content than NDVI Gitelson & Merzlyak (1998)
GVI Green Vegetation Index Emphasizes green vegetation by minimizing the ef-

fects of background soil
Kauth & Thomas (1976)

IPVI Infrared Percentage Vegetation Index Same as NDVI, but computationally faster Crippen (1990)
LAI Leaf Area Index Estimates foliage cover and forecasts crop growth and

yield
Boegh et al. (2002)

MNLI Modified Non-Linear Index Enhancement of non-linear index and uses SAVI to
compensate background soil

Yang et al. (2008)

MSR Modified Simple Ratio Increased sensitivity to vegetation biophysical param-
eters

Chen (1996)

NLI Non-Linear Index Linearizes non-linear surface parameters Goel & Qin (1994)
NDVI Normalized Difference Vegetation Index Measure of healthy and green vegetation Rouse Jr et al. (1974)
OSAVI Optimized Soil Adjusted Vegetation Index Provides greater soil variation than SAVI Rondeaux et al. (1996)
RDVI Renormalized Difference Vegetation Index Highlights healthy vegetation Roujean & Breon (1995)
SAVI Soil Adjusted Vegetation Index Suppresses effects of soil pixels Huete (1988)
TDVI Transformed Difference Vegetation Index Monitoring vegetation cover in urban areas Bannari et al. (2002)For 
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Table 7: Narrowband Greenness Indices.

Acronym Index Highlight Reference

MCARI Modified Chlorophyll Absorption Ratio Index Relative abundance of chlorophyll with minimized ef-
fects of soil and non-photosynthetic surfaces

Daughtry et al. (2000)

MCARI2 Modified Chlorophyll Absorption Ratio Index
- Improved

Better than MCARI and incorporates soil adjustment
factor and resistance to chlorophyll influence

Haboudane et al. (2004)

MRENDVI Modified Red Edge Normalized Difference Veg-
etation Index

Detects small changes in canopy foliage, gap fraction
and senescence by harnessing the sensitivity of vege-
tation red-edge

Datt (1999), Sims & Gamon
(2002)

MRESR Modified Red Edge Simple Ratio Modification of Simple Ratio (SR) which makes use
of bands in the red-edge and incorporates leaf spec-
tacular reflection correction

Sims & Gamon (2002), Datt
(1999)

TVI Triangular Vegetation Index Good for estimating LAI but highly sensitive to
chlorophyll and canopy density

Broge & Leblanc (2001)

MTVI Modified Triangular Vegetation Index Makes TVI suitable for LAI estimations using 800 nm
wavelength and counteracting the effects of changes
in leaf and canopy structures

Haboudane et al. (2004)

MTVI2 Modified Triangular Vegetation Index - Im-
proved

Defines background soil signature while preserving
LAI sensitivity and chlorophyll-resistance

Haboudane et al. (2004)

RENDVI Red Edge Normalized Difference Vegetation
Index

Exploits red-edge vegetation sensitivity to minute
changes in canopy foliage, gap fraction and senescence

Gitelson & Merzlyak (1994),
Sims & Gamon (2002)

REPI Red Edge Position Index Sensitive to changes in chlorophyll concentration Curran et al. (1995)
TCARI Transformed Chlorophyll Absorption Re-

flectance Index
Indicates relative abundance of chlorophyll and is af-
fected by underlying soil reflectance

Haboudane et al. (2004)

VREI Vogelmann Red Edge Index Sensitive to effects of combination of changes in fo-
liage chlorophyll, canopy leaf area and water content

Vogelmann et al. (1993)

For 
pe

rso
na

l u
se

 on
ly



measurements to calculate crop water stress index in wine-grapes. Lawley et al. (2016) present their486

perspectives on vegetation monitoring remote sensing methods and indicators, which are primarily487

site-specific. Lima et al. (2016) check for variations in physiological indicators in papaya trees488

by incorporating different watering regimes. They link these physiological variations to thermal489

imaging. Additional works by Magney et al. (2016), Liu et al. (2016), Mateos & Araus (2016),490

Wang et al. (2016), Silva et al. (2016), Tari (2016), and Yousfi et al. (2016), deal with crop abiotic-491

stress detection, reduction, and management techniques.492

Hou et al. (2016) describe their approach of detecting biotic-stress in grapevines, based on spectral493

imagery and use ant-colony based clustering for detecting this stress from acquired images. Ivanov494

& Bernards (2016) use chlorophyll fluorescence imaging for monitoring biotic-stress caused by root495

pathogens in perennial plants. Mahlein (2016) use imaging sensors for plant biotic-stress detection496

and phenotyping in precision agriculture.497

4.3.2. Yield Prediction498

The aerial images acquired using UAVs can be processed to derive information enabling the499

prediction of yields based on the progress of the crop growth and stress. Maresma et al. (2018)500

employ UAV-based imagery to study nitrogen application response of Zea Mays. The response of501

plants is eventually translated in the form of yield forecast for the crop at the end of the cropping502

cycle. Similar approaches have been used for estimating the yields of heterogeneous crops in small503

landholdings Schut et al. (2018), forage yield in grassland Lussem et al. (2018), wheat crop yields504

using a combination of UAVs and ground sensor networks Zecha et al. (2018), yield prediction of505

Chinese cabbage using broadband indices acquired using UAV imagery Kang et al. (2018), and506

others Sanches et al. (2018).507

4.3.3. Insurance508

One of the most effective schemes in modern-day agriculture using UAVs is the estimation of crop509

insurance Navalgund (2018). Countries such as India are negotiating policies with private players510

such as banks and insurance companies in order to implement a UAV-based crop damage assessment511

in the event of natural calamities, or other such factors. Various Government schemes in India such512

as Pradhan Mantri Fasal Bima Yojna (which translates to Prime Minister’s Crop Insurance Scheme)513

is one of the key policies, which considers making use of technologies such as UAVs for accessing514

crop damage for insurance payouts Gulati et al. (2018).515

5. UAV Deployment Architectures for Precision Agriculture516

The various architectures for deploying UAVs in agricultural applications can be categorized517

into five broad groups – Manual UAV control, Autonomous UAV control, UAV-WSN symbiosis,518

UAV Swarms, and UAV-UGV symbiosis – which are described in Sections 5.1 to 5.5. Various519

features of these architectures are summarized in Table 8.520

5.1. Manual UAV Control521

This architecture involves human operator-based, manual UAV control. Senthilnath et al. (2016)522

demonstrate the use of this architecture in their work. As this architecture is easy to set up, it can be523

used for a wide range of agricultural applications with simple changes or modifications to the UAV’s524

secondary sensors. However, as this architecture relies on manual, line-of-sight (LOS) operation, the525

stability, control and recovery time of the UAV is heavily dependent on its human controller, often526

rendering it less reliable, as compared to autonomous methods of UAV control. In Fig. 10, a user527

controls the UAV’s flight and directs it to various locations over the fields for gathering data which528
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may in the form of visual recordings of a camera or spectroscopic readings or others, depending on529

the application scenario.

Figure 10: Manual UAV deployment architecture.

530

5.2. Autonomous UAV Control531

The autonomous control of UAVs may be divided into two parts – (a) Fully autonomous, as shown532

in Fig. 11) and, (b) Partially autonomous, as shown in Fig. 12. Choi et al. (2016) and Xiang & Tian533

(2011) demonstrate the use of autonomous architectures for their work on and with UAVs. UAVs534

following this deployment architecture have their task pre-defined and need elaborate changes for535

redefining their behavior or flight path. The controller may be implemented on a remote server, or a536

computer with proper radio-interfacing to guide the UAV to and from its target, autonomously. The537

autonomous behavior of these UAVs is achieved through various algorithms which optimize and alter538

the behavior of the UAVs even in the presence of external disturbances, enabling them to complete539

their objective successfully. This is not possible using the manual architecture discussed previously.540

Fig. 11 shows a fully autonomous architecture, where a remote controller is controlling multiple

Figure 11: Fully Autonomous UAV deployment architecture.

541

UAVs without any human intervention. The tasks and objectives of the UAVs are pre-defined.542

Changes in the tasks and the UAV’s mission objectives need considerable changes in the controlling543

algorithms in the remote controller. Fig. 12 shows a partially autonomous architecture for UAV544

deployment. The autonomous controller depends on passive inputs from a user for controlling these545

UAVs. A user has the freedom of defining the UAVs area of operation, tasks to achieve, flight-path,546

and other such parameters, during every flight. Autonomous algorithms control the UAVs’ stability547

and optimize the overall mission-objective, taking into account, the environmental factors and other548

UAV parameters such as battery life and sensors. Here, the autonomous algorithms are bounded by549

the human-input parameters.550
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Figure 12: Partially autonomous UAV deployment architecture.

5.3. UAV-WSN Symbiosis551

This UAV deployment architecture is dependent on the use of ground-based WSN for completion552

of the UAV’s objectives. However, the ground-based WSN may not directly control the UAV’s flight.553

Dong et al. (2014), Valente et al. (2011), Jawhar et al. (2017), and Costa et al. (2012) demonstrate554

the use of this architecture in their work. The WSNs continually record ground parameters which555

are not possible using UAVs. The recorded parameters are transferred to the UAV whenever it is in556

range of the WSN node, using a short-range wireless communication protocol, as shown in Fig. 13.557

The UAV’s path, stability, and mission parameters are, however, controlled by a remotely located558

controller. The UAV facilitates the transfer of data from the ground as well as air to the remote559

station.

Figure 13: UAV deployment architecture with UAV-WSN symbiosis.

560

5.4. UAV Swarm561

Brust & Strimbu (2015) demonstrate the use of a UAV swarm in their work. A remote controller562

directly controls a single UAV – swarm leader – which in turn, controls other UAVs – followers –563

within the leader’s swarm. This architecture makes it possible to control multiple UAVs using a564

single high-power, long-range transmitter, which connects to a single UAV, as shown in Fig. 14.565

The swarm leader connects to other UAVs in its swarm using low-power radios and is responsible for566

controlling the behavior of its followers. Having multiple UAVs performing parts of the same task can567

reduce the time taken to complete an objective. However, this is achieved at the cost of increased568

computations in the UAV and the remote controller (Couceiro et al. (2014)). In continuation,569

decentralized approaches such as the one proposed by De Benedetti et al. (2017) do not require a570

centralized controller for command and control of the swarm. The swarm itself is self-sufficient till571

the completion of its assigned task/mission. However, the use of swarms for accomplishing a task572
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requires the aid of special algorithms, which help in optimally deciding the positions of the UAVs573

for better and cost-efficient coverage (Zorbas et al. (2016), Ari et al. (2016)).574

Figure 14: UAV deployment architecture with UAV swarm based sensing.

5.5. UAV-UGV Symbiosis575

The unmanned aerial vehicle (UAV)- unmanned ground vehicle (UGV) symbiosis architecture576

relies on a mobile ground-rover to extend the range of communication between UAVs and the577

remote station as shown in Fig. 15. The mobile-rover doubles as a local ground-station, albeit578

with lesser processing and control functions as compared to the remote control station. The UGV579

can additionally be used to gather ground-based parameters (geophysical and terrain data) along580

with its primary assignment as the UAV’s relay station with the remote control station. Tokekar581

et al. (2013) use UAV-UGV symbiosis in their work.582

Figure 15: UAV deployment architecture with UAV swarm and UGV collaboration.

6. Leveraging Networked Automation in UAVs for Precision Agriculture583

The UAV deployment architectures highlighted in Section 5 highlight the robustness, flexibility,584

and efficacy of using UAVs for tasks such as precision agriculture. However, certain prominent585

concerns exist in the usage of UAVs for tasks such as precision agriculture. These concerning factors586

are enumerated as:587

1. Effects of wind : The effects of strong winds are generally detrimental to the flight time of588

UAVs. Typically winds tend to alter the regular flight path of fixed-wing UAVs, which are589

low on maneuverability. In contrast, multirotor UAVs tend to use up much energy to stabilize590

themselves and maintain their designated paths during winds, which further puts constraints591

on their already low energy budget.592
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Table 8: Comparison between UAV architectures.

Parameters
Architectures

Manual Autonomous UAV-WSN Swarm UAV-UGV

Range of Control Low Medium Medium High High

Non-LOS Operation No Yes Yes Yes Yes

UAV Stability Low High High High High

UAV Manoeuvrability Low High Medium Medium Medium

Recovery Time Medium Low Low High Medium

Network Cost Very Low Medium Low High High

Computational Cost Low Medium Medium High Medium

Implementation Cost Low Medium Medium High High

Heterogenity of Applications Yes No No Yes Yes

Architecture Setup Time Low Medium High Medium Medium

Coverage Area Small Medium Medium Large Large

Ground-based Sensor Dependencies No Maybe Yes No Maybe

Remote Response Time Low Medium Medium High High
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2. Coverage: The coverage of UAVs are restricted by their energy budgets, which are typically593

low for commercially available, non-military grade UAVs. Additionally, manual control or594

manual supervision of UAVs generally require a line-of-sight operation. In continuation, the595

dependence of UAVs on ground units for control are restricted by the transmission power of596

radio control links, which is typically in the range of 2−3 kilometers for commercially available597

solutions.598

3. Ground equipment : The range of radio control units restricts the dependence of conventional599

UAV-based architectures on ground equipment for controls and decisions. Moreover, the re-600

quirement of ground control units restricts the mobility, speed of deployment, and robustness601

of the UAV-based solutions.602

4. Flight-control expertise: The use of UAV-based solutions in the present day agricultural appli-603

cations are either manual or semi-autonomous (humans monitor flight). This requires proper604

training of the person controlling or monitoring the UAVs, generally at the cost of more money605

and time. Despite proper training, human errors of judgment are a likely possibility during606

human control and supervision.607

5. Task completion time: The use of UAVs in standalone mode require significant time to accom-608

plish tasks assigned, which is a major concern especially due to the restricted flight times of609

these UAVs. Additionally, the typical tasks assigned to UAVs in precision agriculture require610

covering large swathes of land, which could result in a significant consumption of time and611

energy resources.612

6. Manpower required : Traditional control strategies of UAVs require the presence of a person613

per UAV. Sometimes, a person may be tasked with more than one UAV, which significantly614

raises the chances of errors of judgment leading to disastrous consequences.615

All of these concerns can be readily addressed by a new paradigm in the domain of UAVs – au-616

tonomous UAV networks/ UAV swarms. These networked UAV swarms have the capability of617

collective decision making and performing actions in tandem. This capability of swarms can be618

extended to address the challenges posed due to limited coverage areas, task completion times, that619

too with a minimal number of human interventions required. The swarms act as force multipliers in620

domains such as agriculture by enabling very few human controllers to have complete control over621

a much larger number of UAVs, each performing separate tasks. These solutions are outlined in622

Section 6.1.623

6.1. Agricultural Force Multiplier Networked UAV Topologies624

The use of UAVs as force multipliers in agriculture, especially precision agriculture would require625

the usage and handling of multiple UAVs, preferably UAV swarms over a network. This networked626

setup would enable a person or very few persons to monitor or control a large number of UAVs,627

each of which may or may not be assigned similar tasks. The networked control of such system can628

be divided into two broad topologies – 1) Star topology, and 2) Mesh topology. Table 9 summarizes629

the features of star and mesh UAV network topologies.630

6.1.1. Star Topology631

The star topology of networked UAV control encompasses a single ground control unit/server632

connected to multiple aerial UAVs via multiple radio interfaces, one for each UAV. The coordination633

among the UAVs is maintained by the central ground control server as shown in Fig. 16(a). However,634

as the UAVs need to communicate with the central ground unit, any failure at this point would prove635

detrimental for the whole star network as a whole resulting in high possibilities of singular point of636
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Table 9: Comparison between main features of star and mesh networked UAV topologies.

Parameter Star Mesh

Intercommunication between members Via a central hub UAV
or a ground server

Directly with the mem-
bers

Network latency High Low
Single point of failure High Low
Reliability of system as a whole High High
Network bandwidth required Low High
Extension of communication range Not possible Possible
Network cost Low High
Distributed decision making Not feasible Extremely feasible

(a) Simple star topology (b) Multi-star topology

Figure 16: Star topology for agricultural force multiplier using networked UAVs.

failures and high network latencies. Additionally, the possibilities of distributed decision making in637

the air, in the advent of a ground unit failure are not possible in this topology.638

The star topology can be further divided into – 1) Simple star and 2) Multi star Gupta et al.639

(2015) as shown in Fig. 16. A simple star topology has multiple UAVs connected to a central640

hub, which may be a UAV or a ground-based control station as shown in Fig. 16(a). The ground641

controller acts as the gateway for communication between the human handler as well as between the642

UAVs in the star network.643

In continuation, a multi-star topology has multiple communication gateways, either in the form644

of one ground control station and multiple aerial gateways or the form of all aerial gateways com-645

municating with the member UAVs. A multi-star topology is shown in Fig. 16(b).646

6.1.2. Mesh Topology647

The mesh topology, in contrast to the star topology, encompasses multiple networked UAVs648

connected with each other in such a manner that each of the UAVs can directly communicate with649

other member UAVs without the need for a central hub or gateway. The ground link-up with the650

UAV mesh, as shown in Fig. 17, is optional and allows a human handler to communicate with651

the aerial network from time to time to allow for updated tasks and commands. As all the UAVs652

can communicate with all other UAVs in the network, single point of failures are avoided such that653

even if a ground device or UAV fails, the integrity of the network is intact. This topology allows654
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for distributed processing within the mesh, which may be useful in case of loss of link with ground655

control stations or in case the communication range between the ground station and the UAVs is to656

be increased.

(a) Simple mesh topology (b) Hierarchical mesh topology

Figure 17: Mesh topology for agricultural force multiplier using networked UAVs.

657

The UAV mesh topology can be further sub-divided into two groups – 1) Simple mesh topology,658

and 2) Hierarchical mesh topology Gupta et al. (2015) as shown in Fig. 17. A simple mesh topology659

has UAVs, which can communicate with each other without the need for a communication gateway.660

A communication gateway may be established using one of the UAVs, enabling the aerial network to661

communicate with a ground control station to update controls and relay information to its human662

handlers. Fig. 17(a) shows a simple UAV mesh topology. However, the cost of establishing the663

network is significantly high as the number of connections rapidly goes up as the number of UAVs664

in the network increases.665

In continuation, in a hierarchical mesh topology, multiple UAV meshes are connected to a single666

ground control station employing a single UAV per mesh acting as the communication gateway of667

that mesh to the ground control station and the other meshes. This topology is quite complex and668

expensive and is rarely implemented for practical uses.669

7. Future Scope670

Although much work is being done by exploiting the advantages of UAVs in agriculture, still671

scopes are remaining to be further exploited. There are some application areas and architectures,672

which have not been comfortably explored by the researchers till now. This section tries to list these673

gaps and suggests alternative application domains for UAVs in agriculture.674

7.1. Scope of Improvement675

Some of the scopes of improvement, based on the reviewed literature, are summarized below.676

These improvements are more specifically domain-specific and may not apply to UAV usages outside677

agriculture.678

• Ease of Handling : The present-day UAVs require minimal training on the part of the human679

handler for its operation. Every person requires varying amounts of time to build up the680

skill and dexterity to handle UAVs in real-time. Various self-stabilization algorithms can be681

integrated with the UAV controls so that a person with very little training can also handle682

these UAVs.683
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• Power Efficiency : Power consumption and usage efficiency need to be drastically improved for684

the commercially available UAVs. Addressing this issue would enable the UAVs to operate for685

longer hours and increase their reach.686

• On-board processing : Increase in onboard processing capabilities of commercially available687

UAVs may lead to low-network bandwidth requirements for controlling them. The recent688

developments in commercially available, low-cost, miniaturized computing boards having the689

processing power of a regular PC can be explored for these applications. Their power require-690

ments are also minuscule, as compared to other computing platforms of the same caliber.691

• Weather-proofing : It is yet another important aspect which has been looked-over for long. The692

use of these UAVs in agriculture would require them to be resistant to variations in weather693

and environmental conditions while maintaining the ability to perform in those conditions.694

• Collision Avoidance and Assessment : The automation of UAVs require significant processing695

and control resources for ensuring safety of flights, safety of the platform, and safety of in-696

frastructure around it. Faster and precise assessment of collision risks and calculation of the697

best possible collision avoidance measure are instrumental in the success of a reliable aerial698

monitoring or sensing platform.699

7.2. Application Scope700

Some futuristic applications, which may be challenging, yet, may prove to be beneficial in preci-701

sion farming and farmland management, are listed below.702

• Control : More emphasis is needed on the autonomous control of UAVs, so that multiple UAVs703

can accomplish a set of tasks at the same time, even while being supervised by a single human704

controller. Multiple UAVs being controlled by a single user will act as a force multiplier and705

result in increased operational efficiency of the handler. Mechanisms such as gesture-based706

control, and video-based tracking and control, are expected to make the handling of these707

UAVs easier.708

• Control Range: Better and cost-effective radios need to be developed for long-range operations709

of these UAVs. As the field sizes may be huge, it is not always feasible for a human controller to710

follow the UAV everywhere. For a futuristic scenario, a single high-altitude UAV may be used711

for controlling and relaying commands to several low-altitude UAVs, forming a heterogeneous712

network of UAVs.713

• Cloud-based storage and Analysis: A cloud-based UAV system would bring down the cost of714

implementation of this solution in the long run. Buying UAV-cloud services on a pay-per-use715

basis will result in an increased number of people trying and using this service, who otherwise716

would have been intimidated by the initial set-up cost of UAV-based monitoring systems.717

• Modular Functionality : Putting-in explicit goals in the controller, instead of manually control-718

ling and guiding, will result in efficient utilization of time by the human handler. Moreover, as719

these systems are considered for agricultural use, it is not always possible to have trained UAV720

operators or provide training to the end users in UAV handling and maneuvering techniques.721
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7.3. Upcoming Application Areas722

In the context of the applications of UAVs in precision agriculture, we list some of the significantly723

challenging, yet impactful usages of UAVs in precision agriculture under the following heads:724

• Task synchronization: Autonomous UAVs can be used to accomplish tasks in a spatiotempo-725

rally synchronized manner Skobelev et al. (2018), Carbone et al. (2018). As the energy budget726

of the present day UAVs is severely restricted, this approach can significantly reduce the task727

completion time if multiple UAVs divide the task amongst themselves and cover the smaller728

tasks within their energy budget. Alternatively, the UAVs can work one after the other as the729

energy of the previous UAV gets depleted.730

• Plot demarcation: The demarcation of agricultural plots, especially small landholdings is not731

possible digitally using satellite-based imagery. The use of UAVs in such cases proves useful,732

which also enables the electronic autonomous demarcation of small landholdings and detection733

of cadastral boundaries Ramadhani et al. (2018).734

• Spraying : The traditional tasks of fertilizer and pesticide spraying are experimentally tried735

using UAVs. Although successes have been reported DroneSeed (2018), Tang et al. (2018), the736

task is extremely challenging as the fluidic nature of the UAV payload tends to tamper with737

the stability of the UAV during its flight. Additional challenges of aerial spraying include the738

effects of winds on the area of coverage of the spray.739

• Seeding : Seeding is one of the most simple yet innovative uses of UAVs in agriculture. The740

aerial deployment of seeds on prepared lands can be explored for some crop types DroneSeed741

(2018).742

• Damage assessment : UAV-based crop damage assessment is being actively taken up by various743

government agencies as well as private players across the globe Gulati et al. (2018). The ability744

of the UAVs to visually monitor and access the damage to crops in the event of crop failures,745

human, as well as natural disasters is a quick, cost-effective, and promising approach.746

8. Conclusion747

In this manuscript, we have explored the utility and application of UAVs in various agricultural748

domains, but with a special emphasis on precision agriculture. Firstly, we have categorized the UAVs749

based on their structures and mechanisms, sensors used, in and with the UAVs, and the associated750

research areas in UAVs. Secondly, we have explored the utility of UAVs in agriculture, followed by the751

exploration of the works on plant stress detection. We have also listed the remote vegetation indices752

used in estimating plant health which is useful in developing a UAV-based system for agricultural use.753

Finally, a categorization of agricultural UAV deployment architectures, based on popular usage, has754

been provided. We found that there is a paradigm shift taking place concerning remote monitoring755

in precision agriculture. The UAVs are being opted-for as the more feasible and preferred mode for756

remote spatiotemporal imaging of crops at a local scale, as compared to satellites. However, some757

of the technological aspects of this approach need improvement, and newer approaches could also758

be integrated with the UAVs for gaining increased efficiency in precision agriculture.759
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