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Abstract—In this work, we propose a physical approximation
scheme – Random Opportunistic and Selective Exploration
(ROSE) – for aerial localization of survivors by using a collab-
orative swarm of IoT-based unmanned aerial vehicles (UAVs).
The UAV swarm performs a simultaneous multi-pronged search
of a given zone by dividing the search region among the swarm
members. This multi-pronged search strategy speeds-up the
search, and the division of search areas among the swarm
members avoids redundant exploration of an already explored
location. As the communication range of the member UAVs
is limited, the swarm members communicate opportunistically
among themselves to share the information of the visited
sites. We formulate the various probabilities associated with
opportunistic communication of these aerial IoT nodes and
simulate the performance of the approximation algorithm based
on these formulations. Simulation results of the proposed ap-
proach successfully locate 100% of the ground targets within an
acceptable time-frame, and out-performs established searching
schemes such as the truncated Levy walk, frontier-based search,
and sweep search.

Keywords—Cooperative computing, Opportunistic communi-
cation, UAV Swarm, Random walk, Optimal Search theory,
Aerial IoT Network.

I. INTRODUCTION

Unmanned aerial vehicles are being used extensively for
surveillance and search-and-rescue operations owing to their
ability to quickly gain access to remote locations, and their
capability of attaining high coverage speeds during aerial
search operations. It is mainly due to these factors that
UAVs are being rapidly adopted for aerial communica-
tion relaying, and post-disaster management operations [1].
Searching within a realistic time-frame during post-disaster
rescue efforts has enormous societal implications as it directly
translates to saving human lives – shorter the search time,
higher is the chance of maximizing ground-survivor rescue.
Considering an n × n search area on the ground, which
are sub-divided into smaller grids of size LG × LG, with
randomly located targets nS (as represented in Fig. 1), a
single UAV-based search of this grid will accumulate a worst-
case time complexity of O(n2). The use of a single UAV for
searching over a large area is not only time-consuming but
puts excessive strain on the UAV’s power resources.

The coverage of a massive search area is better undertaken
by the use of multiple UAVs at the Edge itself instead
of offloading data to a central system [2]. The use of
intra-communicating UAV swarms for ground-target/survivor
detection is considered more efficient regarding reduced

Figure 1: The implementation scenario showing UAV groups
searching for ground survivors in a gridded search area.

redundancies in target/survivor detection. The Edge UAVs
in the swarm are a part of a network and communicate with
each other to divide the search region among themselves,
resulting in a significant reduction of the overall mission time.
The search zone is typically divided into grids, which can be
directly mapped to real-world GPS coordinates.

For a nD UAV system, we consider a set of UAVs
U = (u1, u2, u3, · · · , unD

) searching for randomly spread
unknown number of ground survivors within the n×n search
zone. For an ith grid location in the search zone denoted by
gi, the ith UAV follows a path pi = (g1, g2, g3, · · · , gj),3
gj ≤ n2, as shown in Fig. 2(b) in order to locate survivors in
its path pi. Let P denote the sum of all visited grids found
by the set of all paths covered by the set of UAVs U in order
to locate maximum survivors within the search zone, such
that

P = {p1, p2, p3, · · ·}, 3 p1 ∩ p2 ∩ p3 ∩ · · · = ∅ (1)

For an ith UAV visiting m(ui) grid locations during its
mission time, P is generalized as

P =

nD∑
i=1

m(ui)∑
k=1

ki, 3 P ≤ n2 (2)

Let nS denote the set of all survivors in all the grid locations
such that the ith grid location in the search area has nis
survivors associated with it. Here, nS can be represented
as {n1s, n2s, n3s, · · · , nn

2

s }. It is noteworthy to mention that
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each nis can have zero survivors ( nis = 0), one survivor (
nis = 1), or more than one survivor ( nis > 1) associated
with it. Considering this, the total survivors nS is general-
ized for the whole search zone as nS =

∑n2

i=1

∑
k∈R+

0
ki.

However the UAVs have limited energy (e), which gradually
depletes with time (t) owing to the energy required to keep
the platforms airbone. The collective energies of all the
UAVs simultaneously performing the search within the search
area at t is considered to be E(t), and is represented as
E(t) =

∑nD

i=1Ei(t).

A. UAV Swarm-based Aerial Exploration

In this work, we consider nS randomly distributed ground
targets/survivors within an n× n search area. nD UAVs are
assigned to visually locate all the ground targets/survivors
within the search area. It is assumed that all the UAVs partici-
pating in the search have the common map of the search area.
It is also assumed that the maximum communication range of
a UAV is limited to the nearest neighbor grid only, especially
as the IoT-enabled communication is typically low-power and
hence, has low-range. Considering, each grid in the search
area to be equilateral with side LG, the communication range
Rcomm of each UAV is restricted to Rcomm = 2

√
2 × LG,

as shown in Fig. 2(a). We define the terms – Exploration
Time, Average Exploration Time, and Redundant Exploration
– concerning this work in Definition 1.

Definition 1. Exploration Time σ is the total time taken by a
UAV to mark all the visited grids and is used interchangeably
with the term – mission time – throughout this work. Average
Exploration Time is the average of σ of each of the deployed
nD UAVs, and is denoted by σ̄, such that σ̄ =

∑nD σ
nD

. Finally,
Redundant Exploration is the act of exploring an already
explored grid.

In Fig. 2(b), we consider three UAVs marked 1, 2, and 3
attempt to search all the grids. The grids already covered by
the UAVs within the search zone are shaded. Subsequently,
from its current position, UAV-1 has the choice of selecting its
next grid to be visited from grids marked A or C. Similarly,
UAV-2 can choose from grids marked B or C, and UAV-
3 can choose from grids marked D. As soon as two UAVs
are in Rcomm of each other, and a choice has to be made
by multiple UAVs regarding the selection of a single grid,
a priority-based UAV selection is applied. This selection
allows one of the UAVs to choose the next location to
visit, subsequently leading the other UAVs to choose from
the grid options remaining. However, it is to be noted that
we do not focus on the priority-based UAV selection in
this work and instead hard-code the priorities of the UAVs
according to their sequence numbers. We additionally assume
the concept of dual velocities for the UAVs – Exploration
velocity (vexplore), and Skip velocity (vskip) – such that
vexplore << vskip. Aerially searching a grid for ground
targets/survivors requires processing the obtained visual data
by the UAV’s cameras, so the value of vexplore is limited by
the UAV’s processing speed instead of the UAV’s kinematic

constraints. However, to skip through an already explored
grid, the UAV travels at its maximum stable velocity.

We additionally restrict the relative motion of the survivors
within a grid. Furthermore, we approximate their movement
to be relatively static in comparison to the motion of the
UAVs within a given frame of time such that for ∆s distance
covered by a survivor, and ∆UAV distance covered by a
UAV in time t, ∆s << ∆UAV ,∀ t ∈ R+. In continuation,
considering the total exploration time σ of a UAV within a
grid of dimensions LG × LG, and survivor velocity within
the grid µ, we define the upper boundary of µ, such that
µ× σ < LG.

(a) Communication range limits (b) Grid coverage by the UAVs

Figure 2: Functional outline of the communication and traver-
sal followed by the UAVs.

Having restricted the motion of the survivors to a search
grid, we consider that the delay in video processing, which
is mainly attributed to the low-power IoT processor on-board
the UAV, and information generation within the UAV vexplore
takes considerable time to complete in each grid. It can be
safely stated that either reducing vexplore or reducing the
number of grids to be visited by each UAV will speed-up the
survivor detection within the given search area. In this work,
we consider vexplore to be fixed and defined by the UAV’s
processor. The only option of rapid detection of survivors is
reducing the grids to be visited by the UAVs, which is again
bounded by constraints of energy and UAVs used.

Definition 2. Survivor Detection Ratio (SDR): We define
Survivor Detection Ratio (SDR) at time τ as the ratio of
number of survivors detected collectively at time τ to total
number of survivors nS .

B. Random Exploration in Opportunistically Communicating
UAV Swarms

We consider multiple IoT-enabled UAVs are searching for
survivors within the search area, which start-off at random
boundary grids and are independent of each other. The UAVs
opportunistically share information whenever they are in
Rcomm of each other. The swarm forms an aerial IoT network
in which all the possible communication links between the
nodes are not active all the time, which is an attempt to reduce
energy consumption. The communication link between two
aerial nodes is activated when they are in proximity to each
other. This communication scheme is opportunistic, and the
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information exchange updates the already visited paths on
the search-area memory maps present with the UAVs so
that redundant exploration is avoided once the information
transfer is completed between the UAVs. Each UAV has a
search region matrix (search-area grid map), in which all
the grids are initially marked unvisited. The UAV marks the
current grid being visited and then randomly chooses the
next grid out of the nearest available unvisited grids. The
information about a UAV’s visited grids is reflected in the
other UAVs as soon as they come within Rcomm of each
other. This scheme ensures the maximization of the mutual
exclusiveness of UAV-wise grid coverage, and reduction
of redundant exploration. Similar to the concept of dual
velocity, we also assume the dual mode of UAV operation
– Exploration mode, and Communication mode. Initially,
all UAVs start in the exploration mode and subsequently
move from one grid to another searching for survivors. As
soon as all the grids are marked visited, the UAVs become
static and enter into the communication mode in which
they only communicate with the UAVs in their vicinity.
To summarize, we propose an approach of multiple UAV-
based aerial searches for survivors, which follow a random
exploration pattern and employ opportunistic communication
[3] to update each other about the grids already covered in
the search area.

II. RELATED WORKS

UAVs are being increasingly deployed for aerial search
and tracking of ground-based targets in domains such as
surveillance, disaster management, border security, wildlife
monitoring and remote mapping. Various approaches have
been deviced for standalone [4] as well as collaborative UAV
swarm based tracking [5] of the ground as well as aerial
targets. Approaches for UAV-based tracking of ground tar-
gets include Gaussian mixture models for prioritizing search
subregions and task difficulty maps for incorporating partial
information [4], geometric relations [5], revisit time based
cooperative tracking [6], decision logic based radio beacon
detection, graph-based search [7], and others [8]. Tasks
related to tracking such as trajectory and path planning of
UAVs also require innovations to consider the energy onboard
the UAVs and fasten the tracking process. Approaches to
UAV path planning such as Monte Carlo tree search and
factored belief vectors [9] play crucial roles in optimizing
features of UAV-dependent solutions. Additional approaches
such as congestion and delay-aware planning algorithms for
highly mobile platforms [10] and self-organization mech-
anisms in decentralized UAV swarms [11] provide much-
needed support to the task of UAV-based tracking of ground
targets.

UAVs flying in a symmetrical formation towards an objec-
tive typically follow time-varying inter-agent distance-based
communication approaches [12]. Harder problems include
multiple UAVs working in a decentralized manner to ac-
complish a task cooperatively. Approaches such as critical
coordination information sharing and cooperative scheduling
[13] show promising results. Trajectory optimization based

approaches are also used for maintaining communication
in UAV networks or even between UAVs and ground base
stations [14]. However, this severely restricts the possible
communication performance, which in turn, can be addressed
by approaches such as variable rate relaying [15].

The UAV search and communication approaches have
dependencies either on the communication infrastructure or
the prior knowledge of inter-UAV distances in a formation.
This dependence results in reduced dynamism and less
adaptiveness in our considered scenario for most of the
approaches. The lack of a fixed reference/communication
infrastructure also results in increased information update
delays and information redundancies, which our proposed
solution intends to address.

III. SYSTEM MODEL

We analyze the problem scenario theoretically and math-
ematically before simulating the solution. We consider a
n × n grid space in which k UAVs are deployed, which
we represent as D = {d1, d2, d3, ..., dk}. The UAVs start the
search operation from different grids and cover paths making
sure it does not search the same grid again. The information
of the visited grids, however, is initially local and contained
only with the UAV visiting it. When two UAVs come within
communication range, they exchange their information of the
visited grids, and then the total available search space reduces
for both UAVs. So, information of one UAV, in this case, is
not globally available to all the other UAVs. The information
is shared probabilistically instead, as shown in Algorithm 1.
Considering, each UAV has its local information of visited
and unvisited grids, let the number of grids unvisited by UAV
di be denoted by ui(t).

Considering that the UAVs interact for the rth time at t =
ωr, we can represent the unvisited grids for the two UAVs as
u1(t) = u1(ωr)− t and u2(t) = u2(ωr)− t, ∀t ∈ [ωr, ωr+1).
At t = ωr, the set of grids covered by d1 is N1

r and that by
d2 is N2

r . Additionally, the number of grids globally visited
by the UAVs d1 and d2 at t = ωr is denoted by vr such that

vr = |N1
r ∪N2

r |, 0 < vr ≤ n2 (3)

Subsequently, the number of unvisited grids for the UAVs
di at t = ωr becomes ui(ωr) = n2 − vr, which can be
reformulated as u1(t) = n2− vr− t and u2(t) = n2− vr− t
∀t ∈ [ωr, ωr+1). We now consider a set S = {(ti, vi) | i ∈
R+}, the elements of which follow the property ωr < ωr+1

and vr ≤ vr+1. Eventually, the number of unvisited grids for
an opportunistically communicating UAV di is formulated as

uoppi (t) = n2 − vr − t, ωr ≤ t < ωr+1 (4)

A. Methodology

This section outlines the methodology followed by the
UAVs in the search area during its exploration task. The
system is initialized by marking all the grids in the UAVs’ in-
memory map of the search area as unvisited. Subsequently,
some UAVs start the random exploration of the area from
randomly selected directions (outwards to inwards) along the
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(a) nD = 5 (b) nD = 10 (c) nD = 15 (d) nD = 20

Figure 3: Grid coverage progress for varying UAVs (nD) in a 10 × 10 search area with 20 survivors randomly distributed
within it.

Algorithm 1 Random Exploration and Opportunistic Com-
munication module for each UAV.

1: Gcurrent ← random grid within bounded region
2: Mark Gcurrent visited
3: MODE ← Exploration
4: while MODE = Exploration do
5: if all grids are marked visited then
6: Record Exploration Time
7: MODE ← Communication
8: end if
9: if Gcurrent 6= Gnext then

10: Travel to Gnext

11: Gcurrent ← Gnext

12: Mark Gcurrent visited
13: end if
14: Search for survivors in the current location
15: if Drones are available for communication then
16: Exchange information with drones with lower drone ID

within communication range
17: if Gcurrent = Gnext then
18: Gnext ← nearest unvisited grid
19: end if
20: Exchange information with drones with higher drone ID

within communication range
21: else
22: if Gcurrent is fully explored then
23: Gnext ← nearest unvisited grid
24: end if
25: end if
26: end while
27: while MODE = Communication do
28: exchange information with drones within communication

range
29: end while

boundary of the search area. Each visited grid is marked in
the in-memory map of the UAV visiting it, following which
the UAV moves to another grid within the search area. The
selection of the next grid is made only once while the UAV
is in its current grid. If, while in a grid, the decision for
the future grid selection has not been made, and if the UAV
comes in the range of another UAV, a decision jointly based
on the priority of the UAVs. As soon as all the grids of
the search area are marked visited, the UAV switches to the
communication mode in which it keeps hovering within the
last visited grid. The information is relayed to other UAVs
opportunistically. Algorithm 1 outlines the explained process
of the proposed ROSE scheme. This algorithm is simulated
in Python. UAV classes and functionalities are separately

defined, and simulation for multiple UAVs is performed on
parallel threads. This parallelism is incoporated to provide
a more realistic simulation environment that goes through
different states simultaneously for various UAVs in the search
area. The parallel threads which were centrally monitored to
extract performance metrics for parameters such as n, nD,
nS , Te and Ts.

IV. PERFORMANCE EVALUATION

We evaluate and analyze the performance of the proposed
ROSE-based scheme against the following metrics – Grid
coverage progress, Average exploration time, Survivor de-
tection ratio, Information exchanges, and Progress of first
interaction time. Finally, we compare the performance of our
scheme against the exploration approaches of Frontier-based
exploration, and Sweep search.

(a) Variations in number of UAVs

(b) Variations in search region

Figure 4: Average exploration time of the proposed approach
(ROSE).
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A. Grid Coverage Progress

We first analyze the grid coverage progress of ROSE with
a given number of UAVs in a search region of a fixed area,
keeping the number of UAVs nD and grids n× n fixed. To
study the coverage progress, we plot the number of unvisited
grids against time as shown in Fig. 3. The slope of the
plotted curve provides the estimate of the measure of the
speed of exploration of the grids – steeper the slope faster is
the exploration speed. In Fig. 3(a), for nD = 5 in a 10× 10
implementation area, the change in the number of unvisited
grids is prolonged, which eventually becomes 0 beyond the
scope of the plot window. Subsequently, in Figs. 3(b), 3(c)
and 3(d), the slope of the curve rapidly increases and the
unvisited grids rapidly drop to 0 for increased number of
UAVs. This increase in the slope implies that the exploration
speed increases, which is practically impossible as the UAV
velocities are limited during exploration. This behavior, in
turn, can be attributed to the information exchanges from
other UAVs which have visited a set of grids not visited
by the current UAV. We previously predict this behavior in
Theorem I-B.

Figure 5: Performance of ROSE and TLW concerning Sur-
vivor Detection Ratio using 10 UAVs in a 10 × 10 search
area with 20 randomly distributed survivors.

B. Average Exploration Time

In continuation, we vary the search grid size n×n and the
number of UAVs nD to study the trend in average exploration
time σ. The evaluation of average exploration time is done to
estimate the speed of detection of the survivors, collectively
by the group of UAVs. We compare our algorithm (ROSE)
with Truncated Levy Walk (TLW) [16] with minor modifi-
cations to incorporate the grid matrix layout of the search
region in it. We then substitute the opportunistic network in
ROSE with a centralized network in which a UAV transmits
information to the coordinator node, which then relays it
to other UAVs. We term this centralized approach Random
Centralized Selective Exploration (RCSE).

We observe that the average exploration time is directly
proportional to the area of the search region (σ̄ ∝ n2) and
inversely proportional to the number of UAVs deployed (σ̄ ∝
1/nD). From Figs. 4(a) and 4(b), as the primary workload

of the exploration process is the area of the search region,
increasing the area takes more time whereas, increasing the
number of UAVs decreases the resultant workload for each
UAV, thereby decreasing the exploration time.

C. Survivor Detection Ratio

From Fig. 5 it is observed that ROSE searches the survivors
faster compared to TLW. We attribute this behavior to the
much lesser redundant explorations performed by the UAVs
as compared to the TLW. The ROSE’s opportunistic data
update at the UAVs, although slower than TLW is quickly
compensated through lower chances of exploring already
explored grids, resulting in ROSE outperforming TLW con-
cerning survivor detection over more extended periods of
time.

(a) Information Exchanges

(b) Interactions vs. sparsity

Figure 6: Comparison of the proposed opportunistic (ROSE)
and a centralized (RCSE) communication approaches with
respect to – a) information exchanges, and 2) time of first
interaction.

D. Information Exchanges

We consider the count of exchanges occurring between the
UAVs for updating information of visited grids and detected
survivors as the number of information exchanges nI . The
UAVs in the proposed ROSE exchange information oppor-
tunistically, while in RCSE, the information is exchanged
by a UAV each time it chooses its next grid. Under these
conditions, we compare the values of nI in ROSE and RCSE
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for varying values of n and nD as shown in Fig. 6(a). We
observe that ROSE outperforms RCSE for the same number
of UAVs and search area. The UAVs in ROSE undergo lesser
information exchanges, which in-turn signifies lesser energy
consumption for overall data transfer.

E. First Interaction Time Progress

In Fig. 6(b), we observe that as the distribution of UAVs
in the search region becomes sparse (lesser UAVs within a
search area), the time measured from the beginning of opera-
tion for two UAVs to interact increases exponentially. As the
probability of interaction of two UAVs inversely proportional
to the area of the search region, Fig. 6(b) signifies that
increasing the sparsity (n2/nD) above a certain threshold (20
in our case) will significantly increase the operational time
of the system as a whole. The trend for maximum, average
and minimum interaction times are similar.

F. Comparison with Existing Schemes

This work primarily builds-up on survivor detection, which
necessitates faster response times for locating ground sur-
vivors. We focus firstly on the average exploration time as
the primary parameter in evaluating the performance of the
proposed ROSE algorithm. We compare the performance
of ROSE against RCSE and TLW regarding the average
exploration time by varying the number of UAVs nD. Finally,
we compare the performance of ROSE to existing approaches
regarding average exploration time and changes in the num-
ber of side grids n.

Firstly, we compare the σ vs. nD for ROSE against
RCSE and the benchmark approach of TLW. In Fig. 7 we
observe that σ̄ for RCSE is of the same order as ROSE. In
continuation, RCSE takes the least time while TLW takes the
most. As the information in RCSE is updated more frequently
compared to ROSE, σ̄ values for RCSE are lower than that
for ROSE. However, the reason for such high values of σ̄
for TLW stems from the fact that much time is wasted in
redundant explorations by the UAVs. The performance of our
proposed ROSE is marginally better than the RCSE approach.
However, as ROSE does not depend on fixed communication
infrastructures and scheduling, the advantages of dynamicity
and robustness far outweigh the benefits of marginally better
average exploration time for RCSE.

We have additionally compared our proposed ROSE with
two existing exploration techniques – 1) Frontier-based ex-
ploration, and 2) Sweep search. In Frontier-based Exploration
[17], [18] the explorers move to the frontiers to explore
the remaining portion of the map, and do not go back
to the visited grids – an approach similar to ours, albeit
without opportunistic information exchanges. The in the other
approach of Sweep Search or Parallel Exploration [19], the
explorers sweep through the search area in parallel paths
and repeat the process for unexplored regions. As we mainly
target minimizing the exploration time, we consider σ as the
performance metric for comparison. Theoretically, the best
case performance of the Sweep Search is dn/nDen, and
that of ROSE is n2/nD. Simulation results in Fig. 8 show

Figure 7: Comparison of the average exploration times for
ROSE, RCSE and TLW in a 10 × 10 search area with 10
UAVs and 20 randomly distributed survivors.

that ROSE is approximately five times faster than Frontier-
based exploration for all values of n. Additionally, ROSE is
marginally poorer than Sweep search for lower values of n,
which becomes comparable for higher values of n.

Figure 8: Comparison of the average exploration times for
ROSE with the established frontier-based search and sweep
search in a 10 × 10 search area with 10 UAVs and 20
randomly distributed survivors.

V. CONCLUSION

In this work, the proposed cooperative scheme for Edge
UAV swarm-based ground survivor detection within a given
search area using random exploration by the swarm members
and opportunistic communication for information updates
shows promising results. During the search for survivors
restricted within grid cells in a fixed search area, we observe
that our proposed ROSE performs better than approaches
such as TLW and Frontier-based search. For larger implemen-
tation areas, our approach becomes comparable to approaches
such as sweep search. The opportunistic communication in
our scheme ensures the exchange of information, but in a
minimalistic manner, which in turn reduces redundancies
in exploration and translates to the conservation of UAV’s
energy resources. As ROSE is a decentralized approach for
coordination of UAVs within a swarm, which does not need
any central coordinator or ground-based communication ref-
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erences, the additional benefits of robustness and dynamicity
are always an added advantage in our approach.

In the future, we plan to integrate efficient survivor iden-
tification techniques along with our proposed ROSE. Addi-
tionally, we plan to implement this on real-life hardware and
include the performance of various communication schemes
and IoT connectivity protocols, which is estimated to be
energy-efficient owing to the nature of the proposed ROSE
scheme.
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